Abstract:Lithium-ion batteries are a key energy storage technology driving revolutions in mobile electronics, electric vehicles and renewable energy storage. Capacity retention is a vital performance measure that is frequently utilized to assess whether these batteries have approached their end-of-life. Machine learning (ML) offers a powerful tool for predicting capacity degradation based on past data, and, potentially, prior physical knowledge, but the degree to which an ML prediction can be trusted is of significant practical importance in situations where consequential decisions must be made based on battery state of health. This study explores the efficacy of fully Bayesian machine learning in forecasting battery health with the quantification of uncertainty in its predictions. Specifically, we implemented three probabilistic ML approaches and evaluated the accuracy of their predictions and uncertainty estimates: a standard Gaussian process (GP), a structured Gaussian process (sGP), and a fully Bayesian neural network (BNN). In typical applications of GP and sGP, their hyperparameters are learned from a single sample while, in contrast, BNNs are typically pre-trained on an existing dataset to learn the weight distributions before being used for inference. This difference in methodology gives the BNN an advantage in learning global trends in a dataset and makes BNNs a good choice when training data is available. However, we show that pre-training can also be leveraged for GP and sGP approaches to learn the prior distributions of the hyperparameters and that in the case of the pre-trained sGP, similar accuracy and improved uncertainty estimation compared to the BNN can be achieved. This approach offers a framework for a broad range of probabilistic machine learning scenarios where past data is available and can be used to learn priors for (hyper)parameters of probabilistic ML models.
Abstract:Exploration of complex high-dimensional spaces presents significant challenges in fields such as molecular discovery, process optimization, and supply chain management. Genetic Algorithms (GAs), while offering significant power for creating new candidate spaces, often entail high computational demands due to the need for evaluation of each new proposed solution. On the other hand, Deep Kernel Learning (DKL) efficiently navigates the spaces of preselected candidate structures but lacks generative capabilities. This study introduces an approach that amalgamates the generative power of GAs to create new candidates with the efficiency of DKL-based surrogate models to rapidly ascertain the behavior of new candidate spaces. This DKL-GA framework can be further used to build Bayesian Optimization (BO) workflows. We demonstrate the effectiveness of this approach through the optimization of the FerroSIM model, showcasing its broad applicability to diverse challenges, including molecular discovery and battery charging optimization.
Abstract:We have developed a Bayesian optimization (BO) workflow that integrates intra-step noise optimization into automated experimental cycles. Traditional BO approaches in automated experiments focus on optimizing experimental trajectories but often overlook the impact of measurement noise on data quality and cost. Our proposed framework simultaneously optimizes both the target property and the associated measurement noise by introducing time as an additional input parameter, thereby balancing the signal-to-noise ratio and experimental duration. Two approaches are explored: a reward-driven noise optimization and a double-optimization acquisition function, both enhancing the efficiency of automated workflows by considering noise and cost within the optimization process. We validate our method through simulations and real-world experiments using Piezoresponse Force Microscopy (PFM), demonstrating the successful optimization of measurement duration and property exploration. Our approach offers a scalable solution for optimizing multiple variables in automated experimental workflows, improving data quality, and reducing resource expenditure in materials science and beyond.
Abstract:Since the dawn of scanning probe microscopy (SPM), tapping or intermittent contact mode has been one of the most widely used imaging modes. Manual optimization of tapping mode not only takes a lot of instrument and operator time, but also often leads to frequent probe and sample damage, poor image quality and reproducibility issues for new types of samples or inexperienced users. Despite wide use, optimization of tapping mode imaging is an extremely hard problem, ill-suited to either classical control methods or machine learning. Here we introduce a reward-driven workflow to automate the optimization of SPM in the tapping mode. The reward function is defined based on multiple channels with physical and empirical knowledge of good scans encoded, representing a sample-agnostic measure of image quality and imitating the decision-making logic employed by human operators. This automated workflow gives optimal scanning parameters for different probes and samples and gives high-quality SPM images consistently in the attractive mode. This study broadens the application and accessibility of SPM and opens the door for fully automated SPM.
Abstract:The rapid development of computation power and machine learning algorithms has paved the way for automating scientific discovery with a scanning probe microscope (SPM). The key elements towards operationalization of automated SPM are the interface to enable SPM control from Python codes, availability of high computing power, and development of workflows for scientific discovery. Here we build a Python interface library that enables controlling an SPM from either a local computer or a remote high-performance computer (HPC), which satisfies the high computation power need of machine learning algorithms in autonomous workflows. We further introduce a general platform to abstract the operations of SPM in scientific discovery into fixed-policy or reward-driven workflows. Our work provides a full infrastructure to build automated SPM workflows for both routine operations and autonomous scientific discovery with machine learning.
Abstract:The rise of electron microscopy has expanded our ability to acquire nanometer and atomically resolved images of complex materials. The resulting vast datasets are typically analyzed by human operators, an intrinsically challenging process due to the multiple possible analysis steps and the corresponding need to build and optimize complex analysis workflows. We present a methodology based on the concept of a Reward Function coupled with Bayesian Optimization, to optimize image analysis workflows dynamically. The Reward Function is engineered to closely align with the experimental objectives and broader context and is quantifiable upon completion of the analysis. Here, cross-section, high-angle annular dark field (HAADF) images of ion-irradiated $(Y, Dy)Ba_2Cu_3O_{7-\delta}$ thin-films were used as a model system. The reward functions were formed based on the expected materials density and atomic spacings and used to drive multi-objective optimization of the classical Laplacian-of-Gaussian (LoG) method. These results can be benchmarked against the DCNN segmentation. This optimized LoG* compares favorably against DCNN in the presence of the additional noise. We further extend the reward function approach towards the identification of partially-disordered regions, creating a physics-driven reward function and action space of high-dimensional clustering. We pose that with correct definition, the reward function approach allows real-time optimization of complex analysis workflows at much higher speeds and lower computational costs than classical DCNN-based inference, ensuring the attainment of results that are both precise and aligned with the human-defined objectives.
Abstract:Scientific advancement is universally based on the dynamic interplay between theoretical insights, modelling, and experimental discoveries. However, this feedback loop is often slow, including delayed community interactions and the gradual integration of experimental data into theoretical frameworks. This challenge is particularly exacerbated in domains dealing with high-dimensional object spaces, such as molecules and complex microstructures. Hence, the integration of theory within automated and autonomous experimental setups, or theory in the loop automated experiment, is emerging as a crucial objective for accelerating scientific research. The critical aspect is not only to use theory but also on-the-fly theory updates during the experiment. Here, we introduce a method for integrating theory into the loop through Bayesian co-navigation of theoretical model space and experimentation. Our approach leverages the concurrent development of surrogate models for both simulation and experimental domains at the rates determined by latencies and costs of experiments and computation, alongside the adjustment of control parameters within theoretical models to minimize epistemic uncertainty over the experimental object spaces. This methodology facilitates the creation of digital twins of material structures, encompassing both the surrogate model of behavior that includes the correlative part and the theoretical model itself. While demonstrated here within the context of functional responses in ferroelectric materials, our approach holds promise for broader applications, the exploration of optical properties in nanoclusters, microstructure-dependent properties in complex materials, and properties of molecular systems. The analysis code that supports the funding is publicly available at https://github.com/Slautin/2024_Co-navigation/tree/main
Abstract:Exploring molecular spaces is crucial for advancing our understanding of chemical properties and reactions, leading to groundbreaking innovations in materials science, medicine, and energy. This paper explores an approach for active learning in molecular discovery using Deep Kernel Learning (DKL), a novel approach surpassing the limits of classical Variational Autoencoders (VAEs). Employing the QM9 dataset, we contrast DKL with traditional VAEs, which analyze molecular structures based on similarity, revealing limitations due to sparse regularities in latent spaces. DKL, however, offers a more holistic perspective by correlating structure with properties, creating latent spaces that prioritize molecular functionality. This is achieved by recalculating embedding vectors iteratively, aligning with the experimental availability of target properties. The resulting latent spaces are not only better organized but also exhibit unique characteristics such as concentrated maxima representing molecular functionalities and a correlation between predictive uncertainty and error. Additionally, the formation of exclusion regions around certain compounds indicates unexplored areas with potential for groundbreaking functionalities. This study underscores DKL's potential in molecular research, offering new avenues for understanding and discovering molecular functionalities beyond classical VAE limitations.
Abstract:Both computational and experimental material discovery bring forth the challenge of exploring multidimensional and often non-differentiable parameter spaces, such as phase diagrams of Hamiltonians with multiple interactions, composition spaces of combinatorial libraries, processing spaces, and molecular embedding spaces. Often these systems are expensive or time-consuming to evaluate a single instance, and hence classical approaches based on exhaustive grid or random search are too data intensive. This resulted in strong interest towards active learning methods such as Bayesian optimization (BO) where the adaptive exploration occurs based on human learning (discovery) objective. However, classical BO is based on a predefined optimization target, and policies balancing exploration and exploitation are purely data driven. In practical settings, the domain expert can pose prior knowledge on the system in form of partially known physics laws and often varies exploration policies during the experiment. Here, we explore interactive workflows building on multi-fidelity BO (MFBO), starting with classical (data-driven) MFBO, then structured (physics-driven) sMFBO, and extending it to allow human in the loop interactive iMFBO workflows for adaptive and domain expert aligned exploration. These approaches are demonstrated over highly non-smooth multi-fidelity simulation data generated from an Ising model, considering spin-spin interaction as parameter space, lattice sizes as fidelity spaces, and the objective as maximizing heat capacity. Detailed analysis and comparison show the impact of physics knowledge injection and on-the-fly human decisions for improved exploration, current challenges, and potential opportunities for algorithm development with combining data, physics and real time human decisions.
Abstract:The rapid growth of automated and autonomous instrumentations brings forth an opportunity for the co-orchestration of multimodal tools, equipped with multiple sequential detection methods, or several characterization tools to explore identical samples. This can be exemplified by the combinatorial libraries that can be explored in multiple locations by multiple tools simultaneously, or downstream characterization in automated synthesis systems. In the co-orchestration approaches, information gained in one modality should accelerate the discovery of other modalities. Correspondingly, the orchestrating agent should select the measurement modality based on the anticipated knowledge gain and measurement cost. Here, we propose and implement a co-orchestration approach for conducting measurements with complex observables such as spectra or images. The method relies on combining dimensionality reduction by variational autoencoders with representation learning for control over the latent space structure, and integrated into iterative workflow via multi-task Gaussian Processes (GP). This approach further allows for the native incorporation of the system's physics via a probabilistic model as a mean function of the GP. We illustrated this method for different modalities of piezoresponse force microscopy and micro-Raman on combinatorial $Sm-BiFeO_3$ library. However, the proposed framework is general and can be extended to multiple measurement modalities and arbitrary dimensionality of measured signals. The analysis code that supports the funding is publicly available at https://github.com/Slautin/2024_Co-orchestration.