Abstract:The field of NLP has undergone vast, continuous transformations over the past few years, sparking debates going beyond discipline boundaries. This begs important questions in education: how do we design courses that bridge sub-disciplines in this shifting landscape? This paper explores this question from the angle of discourse processing, an area with rich linguistic insights and computational models for the intentional, attentional, and coherence structure of language. Discourse is highly relevant for open-ended or long-form text generation, yet this connection is under-explored in existing undergraduate curricula. We present a new course, "Computational Discourse and Natural Language Generation". The course is collaboratively designed by a team with complementary expertise and was offered for the first time in Fall 2025 as an upper-level undergraduate course, cross-listed between Linguistics and Computer Science. Our philosophy is to deeply integrate the theoretical and empirical aspects, and create an exploratory mindset inside the classroom and in the assignments. This paper describes the course in detail and concludes with takeaways from an independent survey as well as our vision for future directions.
Abstract:In high-stakes domains like medicine, it may be generally desirable for models to faithfully adhere to the context provided. But what happens if the context does not align with model priors or safety protocols? In this paper, we investigate how LLMs behave and reason when presented with counterfactual or even adversarial medical evidence. We first construct MedCounterFact, a counterfactual medical QA dataset that requires the models to answer clinical comparison questions (i.e., judge the efficacy of certain treatments, with evidence consisting of randomized controlled trials provided as context). In MedCounterFact, real-world medical interventions within the questions and evidence are systematically replaced with four types of counterfactual stimuli, ranging from unknown words to toxic substances. Our evaluation across multiple frontier LLMs on MedCounterFact reveals that in the presence of counterfactual evidence, existing models overwhelmingly accept such "evidence" at face value even when it is dangerous or implausible, and provide confident and uncaveated answers. While it may be prudent to draw a boundary between faithfulness and safety, our findings reveal that there exists no such boundary yet.
Abstract:The role of world knowledge has been particularly crucial to predict the discourse connective that marks the discourse relation between two arguments, with language models (LMs) being generally successful at this task. We flip this premise in our work, and instead study the inverse problem of understanding whether discourse connectives can inform LMs about the world. To this end, we present WUGNECTIVES, a dataset of 8,880 stimuli that evaluates LMs' inferences about novel entities in contexts where connectives link the entities to particular attributes. On investigating 17 different LMs at various scales, and training regimens, we found that tuning an LM to show reasoning behavior yields noteworthy improvements on most connectives. At the same time, there was a large variation in LMs' overall performance across connective type, with all models systematically struggling on connectives that express a concessive meaning. Our findings pave the way for more nuanced investigations into the functional role of language cues as captured by LMs. We release WUGNECTIVES at https://github.com/sheffwb/wugnectives.
Abstract:Technological progress has led to concrete advancements in tasks that were regarded as challenging, such as automatic fact-checking. Interest in adopting these systems for public health and medicine has grown due to the high-stakes nature of medical decisions and challenges in critically appraising a vast and diverse medical literature. Evidence-based medicine connects to every individual, and yet the nature of it is highly technical, rendering the medical literacy of majority users inadequate to sufficiently navigate the domain. Such problems with medical communication ripens the ground for end-to-end fact-checking agents: check a claim against current medical literature and return with an evidence-backed verdict. And yet, such systems remain largely unused. To understand this, we present the first study examining how clinical experts verify real claims from social media by synthesizing medical evidence. In searching for this upper-bound, we reveal fundamental challenges in end-to-end fact-checking when applied to medicine: Difficulties connecting claims in the wild to scientific evidence in the form of clinical trials; ambiguities in underspecified claims mixed with mismatched intentions; and inherently subjective veracity labels. We argue that fact-checking should be approached and evaluated as an interactive communication problem, rather than an end-to-end process.
Abstract:Discourse particles are crucial elements that subtly shape the meaning of text. These words, often polyfunctional, give rise to nuanced and often quite disparate semantic/discourse effects, as exemplified by the diverse uses of the particle "just" (e.g., exclusive, temporal, emphatic). This work investigates the capacity of LLMs to distinguish the fine-grained senses of English "just", a well-studied example in formal semantics, using data meticulously created and labeled by expert linguists. Our findings reveal that while LLMs exhibit some ability to differentiate between broader categories, they struggle to fully capture more subtle nuances, highlighting a gap in their understanding of discourse particles.
Abstract:Large Language Models (LLMs) are being explored for applications in scientific research, including their capabilities to synthesize literature, answer research questions, generate research ideas, and even conduct computational experiments. Ultimately, our goal is for these to help scientists derive novel scientific insights. In many areas of science, such insights often arise from processing and visualizing data to understand its patterns. However, evaluating whether an LLM-mediated scientific workflow produces outputs conveying the correct scientific insights is challenging to evaluate and has not been addressed in past work. We introduce AstroVisBench, the first benchmark for both scientific computing and visualization in the astronomy domain. AstroVisBench judges a language model's ability to both (1) create astronomy-specific workflows to process and analyze data and (2) visualize the results of these workflows through complex plots. Our evaluation of visualizations uses a novel LLM-as-a-judge workflow, which is validated against annotation by five professional astronomers. Using AstroVisBench we present an evaluation of state-of-the-art language models, showing a significant gap in their ability to engage in astronomy research as useful assistants. This evaluation provides a strong end-to-end evaluation for AI scientists that offers a path forward for the development of visualization-based workflows, which are central to a broad range of domains from physics to biology.
Abstract:Exceptional behavior tests (EBTs) are crucial in software development for verifying that code correctly handles unwanted events and throws appropriate exceptions. However, prior research has shown that developers often prioritize testing "happy paths", e.g., paths without unwanted events over exceptional scenarios. We present exLong, a framework that automatically generates EBTs to address this gap. exLong leverages a large language model (LLM) fine-tuned from CodeLlama and incorporates reasoning about exception-throwing traces, conditional expressions that guard throw statements, and non-exceptional behavior tests that execute similar traces. Our demonstration video illustrates how exLong can effectively assist developers in creating comprehensive EBTs for their project (available at https://youtu.be/Jro8kMgplZk).
Abstract:Evaluation of language model outputs on structured writing tasks is typically conducted with a number of desirable criteria presented to human evaluators or large language models (LLMs). For instance, on a prompt like "Help me draft an academic talk on coffee intake vs research productivity", a model response may be evaluated for criteria like accuracy and coherence. However, high-quality responses should do more than just satisfy basic task requirements. An effective response to this query should include quintessential features of an academic talk, such as a compelling opening, clear research questions, and a takeaway. To help identify these implicit criteria, we introduce EvalAgent, a novel framework designed to automatically uncover nuanced and task-specific criteria. EvalAgent first mines expert-authored online guidance. It then uses this evidence to propose diverse, long-tail evaluation criteria that are grounded in reliable external sources. Our experiments demonstrate that the grounded criteria produced by EvalAgent are often implicit (not directly stated in the user's prompt), yet specific (high degree of lexical precision). Further, EvalAgent criteria are often not satisfied by initial responses but they are actionable, such that responses can be refined to satisfy them. Finally, we show that combining LLM-generated and EvalAgent criteria uncovers more human-valued criteria than using LLMs alone.




Abstract:As large language models become increasingly capable at various writing tasks, their weakness at generating unique and creative content becomes a major liability. Although LLMs have the ability to generate text covering diverse topics, there is an overall sense of repetitiveness across texts that we aim to formalize and quantify via a similarity metric. The familiarity between documents arises from the persistence of underlying discourse structures. However, existing similarity metrics dependent on lexical overlap and syntactic patterns largely capture $\textit{content}$ overlap, thus making them unsuitable for detecting $\textit{structural}$ similarities. We introduce an abstraction based on linguistic theories in Questions Under Discussion (QUD) and question semantics to help quantify differences in discourse progression. We then use this framework to build $\textbf{QUDsim}$, a similarity metric that can detect discursive parallels between documents. Using QUDsim, we find that LLMs often reuse discourse structures (more so than humans) across samples, even when content differs. Furthermore, LLMs are not only repetitive and structurally uniform, but are also divergent from human authors in the types of structures they use.




Abstract:Large Language Models (LLMs) excel at text summarization, a task that requires models to select content based on its importance. However, the exact notion of salience that LLMs have internalized remains unclear. To bridge this gap, we introduce an explainable framework to systematically derive and investigate information salience in LLMs through their summarization behavior. Using length-controlled summarization as a behavioral probe into the content selection process, and tracing the answerability of Questions Under Discussion throughout, we derive a proxy for how models prioritize information. Our experiments on 13 models across four datasets reveal that LLMs have a nuanced, hierarchical notion of salience, generally consistent across model families and sizes. While models show highly consistent behavior and hence salience patterns, this notion of salience cannot be accessed through introspection, and only weakly correlates with human perceptions of information salience.