Abstract:Although large language models (LLMs) have become generally more capable and accurate across many tasks, some fundamental sources of unreliability remain in their behavior. One key limitation is their inconsistency at reporting the the same information when prompts are changed. In this paper, we consider the discrepancy between a model's generated answer and their own verification of that answer, the generator-validator gap. We define this gap in a more stringent way than prior work: we expect correlation of scores from a generator and a validator over the entire set of candidate answers. We show that according to this measure, a large gap exists in various settings, including question answering, lexical semantics tasks, and next-word prediction. We then propose RankAlign, a ranking-based training method, and show that it significantly closes the gap by 31.8% on average, surpassing all baseline methods. Moreover, this approach generalizes well to out-of-domain tasks and lexical items.
Abstract:As large language models become increasingly capable at various writing tasks, their weakness at generating unique and creative content becomes a major liability. Although LLMs have the ability to generate text covering diverse topics, there is an overall sense of repetitiveness across texts that we aim to formalize and quantify via a similarity metric. The familiarity between documents arises from the persistence of underlying discourse structures. However, existing similarity metrics dependent on lexical overlap and syntactic patterns largely capture $\textit{content}$ overlap, thus making them unsuitable for detecting $\textit{structural}$ similarities. We introduce an abstraction based on linguistic theories in Questions Under Discussion (QUD) and question semantics to help quantify differences in discourse progression. We then use this framework to build $\textbf{QUDsim}$, a similarity metric that can detect discursive parallels between documents. Using QUDsim, we find that LLMs often reuse discourse structures (more so than humans) across samples, even when content differs. Furthermore, LLMs are not only repetitive and structurally uniform, but are also divergent from human authors in the types of structures they use.
Abstract:Determining faithfulness of a claim to a source document is an important problem across many domains. This task is generally treated as a binary judgment of whether the claim is supported or unsupported in relation to the source. In many cases, though, whether a claim is supported can be ambiguous. For instance, it may depend on making inferences from given evidence, and different people can reasonably interpret the claim as either supported or unsupported based on their agreement with those inferences. Forcing binary labels upon such claims lowers the reliability of evaluation. In this work, we reframe the task to manage the subjectivity involved with factuality judgments of ambiguous claims. We introduce LLM-generated edits of summaries as a method of providing a nuanced evaluation of claims: how much does a summary need to be edited to be unambiguous? Whether a claim gets rewritten and how much it changes can be used as an automatic evaluation metric, the Ambiguity Rewrite Metric (ARM), with a much richer feedback signal than a binary judgment of faithfulness. We focus on the area of narrative summarization as it is particularly rife with ambiguity and subjective interpretation. We show that ARM produces a 21% absolute improvement in annotator agreement on claim faithfulness, indicating that subjectivity is reduced.
Abstract:Neural networks have shown substantial promise at automatic theorem-proving in interactive proof assistants (ITPs) like Lean and Coq. However, most neural theorem-proving models are restricted to specific ITPs, leaving out opportunities for cross-lingual $\textit{transfer}$ between ITPs. We address this weakness with a multilingual proof framework, ${\rm P{\small ROOF}W{\small ALA}}$, that allows a standardized form of interaction between neural theorem-provers and two established ITPs (Coq and Lean). It enables the collection of multilingual proof step data -- data recording the result of proof actions on ITP states -- for training neural provers. ${\rm P{\small ROOF}W{\small ALA}}$ allows the systematic evaluation of a model's performance across different ITPs and problem domains via efficient parallel proof search algorithms. We show that multilingual training enabled by ${\rm P{\small ROOF}W{\small ALA}}$ can lead to successful transfer across ITPs. Specifically, a model trained on a mix of ${\rm P{\small ROOF}W{\small ALA}}$-generated Coq and Lean data outperforms Lean-only and Coq-only models on the standard prove-at-$k$ metric. We open source all code including code for the $\href{https://github.com/trishullab/proof-wala}{ProofWala\; Framework}$, and the $\href{https://github.com/trishullab/itp-interface}{Multilingual\; ITP\; interaction\; framework}$.
Abstract:Existing benchmarks for evaluating long-context language models (LCLMs) primarily focus on long-context recall, requiring models to produce short responses based on a few critical snippets while processing thousands of irrelevant tokens. We introduce LongProc (Long Procedural Generation), a new benchmark that requires both the integration of highly dispersed information and long-form generation. LongProc consists of six diverse procedural generation tasks, such as extracting structured information from HTML pages into a TSV format and executing complex search procedures to create travel plans. These tasks challenge LCLMs by testing their ability to follow detailed procedural instructions, synthesize and reason over dispersed information, and generate structured, long-form outputs (up to 8K tokens). Furthermore, as these tasks adhere to deterministic procedures and yield structured outputs, they enable reliable rule-based evaluation. We evaluate 17 LCLMs on LongProc across three difficulty levels, with maximum numbers of output tokens set at 500, 2K, and 8K. Notably, while all tested models claim a context window size above 32K tokens, open-weight models typically falter on 2K-token tasks, and closed-source models like GPT-4o show significant degradation on 8K-token tasks. Further analysis reveals that LCLMs struggle to maintain long-range coherence in long-form generations. These findings highlight critical limitations in current LCLMs and suggest substantial room for improvement. Data and code available at: https://princeton-pli.github.io/LongProc
Abstract:Long-context LLMs are increasingly in demand for applications such as retrieval-augmented generation. To defray the cost of pretraining LLMs over long contexts, recent work takes an approach of synthetic context extension: fine-tuning LLMs with synthetically generated long-context data in a post-training stage. However, it remains unclear how and why this synthetic context extension imparts abilities for downstream long-context tasks. In this paper, we investigate fine-tuning on synthetic data for three long-context tasks that require retrieval and reasoning. We vary the realism of "needle" concepts to be retrieved and diversity of the surrounding "haystack" context, from using LLMs to construct synthetic documents to using templated relations and creating symbolic datasets. We find that models trained on synthetic data fall short of the real data, but surprisingly, the mismatch can be interpreted and even predicted in terms of a special set of attention heads that are responsible for retrieval over long context: retrieval heads (Wu et al., 2024). The retrieval heads learned on synthetic data are mostly subsets of the retrieval heads learned on real data, and there is a strong correlation between the recall of heads learned and the downstream performance of a model. Furthermore, with attention knockout and activation patching, we mechanistically show that retrieval heads are necessary and explain model performance, although they are not totally sufficient. Our results shed light on how to interpret synthetic data fine-tuning performance and how to approach creating better data for learning real-world capabilities over long contexts.
Abstract:Recent work on fact-checking addresses a realistic setting where models incorporate evidence retrieved from the web to decide the veracity of claims. A bottleneck in this pipeline is in retrieving relevant evidence: traditional methods may surface documents directly related to a claim, but fact-checking complex claims requires more inferences. For instance, a document about how a vaccine was developed is relevant to addressing claims about what it might contain, even if it does not address them directly. We present Contrastive Fact-Checking Reranker (CFR), an improved retriever for this setting. By leveraging the AVeriTeC dataset, which annotates subquestions for claims with human written answers from evidence documents, we fine-tune Contriever with a contrastive objective based on multiple training signals, including distillation from GPT-4, evaluating subquestion answers, and gold labels in the dataset. We evaluate our model on both retrieval and end-to-end veracity judgments about claims. On the AVeriTeC dataset, we find a 6\% improvement in veracity classification accuracy. We also show our gains can be transferred to FEVER, ClaimDecomp, HotpotQA, and a synthetic dataset requiring retrievers to make inferences.
Abstract:Chain-of-thought (CoT) via prompting is the de facto method for eliciting reasoning capabilities from large language models (LLMs). But for what kinds of tasks is this extra ``thinking'' really helpful? To analyze this, we conducted a quantitative meta-analysis covering over 100 papers using CoT and ran our own evaluations of 20 datasets across 14 models. Our results show that CoT gives strong performance benefits primarily on tasks involving math or logic, with much smaller gains on other types of tasks. On MMLU, directly generating the answer without CoT leads to almost identical accuracy as CoT unless the question or model's response contains an equals sign, indicating symbolic operations and reasoning. Following this finding, we analyze the behavior of CoT on these problems by separating planning and execution and comparing against tool-augmented LLMs. Much of CoT's gain comes from improving symbolic execution, but it underperforms relative to using a symbolic solver. Our results indicate that CoT can be applied selectively, maintaining performance while saving inference costs. Furthermore, they suggest a need to move beyond prompt-based CoT to new paradigms that better leverage intermediate computation across the whole range of LLM applications.
Abstract:Large language models (LLMs) are increasingly being used to synthesize and reason about source code. However, the static nature of these models' knowledge does not reflect the fact that libraries and API functions they invoke are continuously evolving, with functionality being added or changing. While numerous benchmarks evaluate how LLMs can generate code, no prior work has studied how an LLMs' knowledge about code API functions can be updated. To fill this gap, we present CodeUpdateArena, a benchmark for knowledge editing in the code domain. An instance in our benchmark consists of a synthetic API function update paired with a program synthesis example that uses the updated functionality; our goal is to update an LLM to be able to solve this program synthesis example without providing documentation of the update at inference time. Compared to knowledge editing for facts encoded in text, success here is more challenging: a code LLM must correctly reason about the semantics of the modified function rather than just reproduce its syntax. Our dataset is constructed by first prompting GPT-4 to generate atomic and executable function updates. Then, for each update, we generate program synthesis examples whose code solutions are prone to use the update. Our benchmark covers updates of various types to 54 functions from seven diverse Python packages, with a total of 670 program synthesis examples. Our experiments show that prepending documentation of the update to open-source code LLMs (i.e., DeepSeek, CodeLlama) does not allow them to incorporate changes for problem solving, and existing knowledge editing techniques also have substantial room for improvement. We hope our benchmark will inspire new methods for knowledge updating in code LLMs.
Abstract:Recent work has explored the capability of large language models (LLMs) to identify and correct errors in LLM-generated responses. These refinement approaches frequently evaluate what sizes of models are able to do refinement for what problems, but less attention is paid to what effective feedback for refinement looks like. In this work, we propose looking at refinement with feedback as a composition of three distinct LLM competencies: (1) identification of bad generations; (2) fine-grained natural language feedback generation; (3) refining with fine-grained feedback. The first step can be implemented with a high-performing discriminative model and steps 2 and 3 can be implemented either via prompted or fine-tuned LLMs. A key property of this approach is that the step 2 critique model can give fine-grained feedback about errors, made possible by offloading the discrimination to a separate model in step 1. We show that models of different capabilities benefit from refining with this approach on the task of improving factual consistency of document grounded summaries. Overall, our proposed method consistently outperforms existing end-to-end refinement approaches and current trained models not fine-tuned for factuality critiquing.