Abstract:In the fast-evolving field of information retrieval (IR), the integration of generative AI technologies such as large language models (LLMs) is transforming how users search for and interact with information. Recognizing this paradigm shift at the intersection of IR and generative AI (IR-GenAI), a visioning workshop supported by the Computing Community Consortium (CCC) was held in July 2024 to discuss the future of IR in the age of generative AI. This workshop convened 44 experts in information retrieval, natural language processing, human-computer interaction, and artificial intelligence from academia, industry, and government to explore how generative AI can enhance IR and vice versa, and to identify the major challenges and opportunities in this rapidly advancing field. This report contains a summary of discussions as potentially important research topics and contains a list of recommendations for academics, industry practitioners, institutions, evaluation campaigns, and funding agencies.
Abstract:Generating long sequences of tokens given a long-context input imposes a heavy computational burden for large language models (LLMs). One of the computational bottleneck comes from computing attention over a long sequence of input at each generation step. In this paper, we propose Recycled Attention, an inference-time method which alternates between full context attention and attention over a subset of input tokens. When performing partial attention, we recycle the attention pattern of a previous token that has performed full attention and attend only to the top K most attended tokens, reducing the cost of data movement and attention computation. Compared to previously proposed inference-time acceleration method which attends only to local context or tokens with high accumulative attention scores, our approach flexibly chooses tokens that are relevant to the current decoding step. We evaluate our methods on RULER, a suite of tasks designed to comprehensively evaluate long-context abilities, and long-context language modeling tasks. Applying our method to off-the-shelf LLMs achieves comparable speedup to baselines which only consider local context while improving the performance by 2x. We further explore two ideas to improve performance-efficiency trade-offs: (1) dynamically decide when to perform recycled or full attention step based on the query similarities and (2) continued pre-training the model with Recycled Attention.
Abstract:We investigate whether in-context examples, widely used in decoder-only language models (LLMs), can improve embedding model performance in retrieval tasks. Unlike in LLMs, naively prepending in-context examples (query-document pairs) to the target query at inference time does not work out of the box. We introduce a simple approach to enable retrievers to use in-context examples. Our approach, RARe, finetunes a pre-trained model with in-context examples whose query is semantically similar to the target query. This can be applied to adapt various base architectures (i.e., decoder-only language models, retriever models) and consistently achieves performance gains of up to +2.72% nDCG across various open-domain retrieval datasets (BeIR, RAR-b). In particular, we find RARe exhibits stronger out-of-domain generalization compared to models using queries without in-context examples, similar to what is seen for in-context learning in LLMs. We further provide analysis on the design choices of in-context example augmentation and lay the foundation for future work in this space.
Abstract:We examine diverging preferences in human-labeled preference datasets. We develop a taxonomy of disagreement sources spanning 10 categories across four high-level classes -- task underspecification, response style, refusals, and annotation errors. We find that the majority of disagreements are in opposition with standard reward modeling approaches, which are designed with the assumption that annotator disagreement is noise. We then explore how these findings impact two areas of LLM development: reward modeling and evaluation. In our experiments, we demonstrate how standard reward modeling methods, like the Bradley-Terry model, fail to differentiate whether a given preference judgment is the result of unanimous agreement among annotators or the majority opinion among diverging user preferences. We also find that these tendencies are also echoed by popular LLM-as-Judge evaluation methods, which consistently identify a winning response in cases of diverging preferences. These findings highlight remaining challenges in LLM evaluations, which are greatly influenced by divisive features like response style, and in developing pluralistically aligned LLMs. To address these issues, we develop methods for identifying diverging preferences to mitigate their influence on evaluation and training.
Abstract:Large language models (LLMs) must often respond to highly ambiguous user requests. In such cases, the LLM's best response may be to ask a clarifying question to elicit more information. We observe existing LLMs often respond by presupposing a single interpretation of such ambiguous requests, frustrating users who intended a different interpretation. We speculate this is caused by current preference data labeling practice, where LLM responses are evaluated only on their prior contexts. To address this, we propose to assign preference labels by simulating their expected outcomes in the future turns. This allows LLMs to learn to ask clarifying questions when it can generate responses that are tailored to each user interpretation in future turns. In experiments on open-domain QA, we compare systems that trained using our proposed preference labeling methods against standard methods, which assign preferences based on only prior context. We evaluate systems based on their ability to ask clarifying questions that can recover each user's interpretation and expected answer, and find that our training with our proposed method trains LLMs to ask clarifying questions with a 5% improvement in F1 measured against the answer set from different interpretations of each query
Abstract:Recent work on fact-checking addresses a realistic setting where models incorporate evidence retrieved from the web to decide the veracity of claims. A bottleneck in this pipeline is in retrieving relevant evidence: traditional methods may surface documents directly related to a claim, but fact-checking complex claims requires more inferences. For instance, a document about how a vaccine was developed is relevant to addressing claims about what it might contain, even if it does not address them directly. We present Contrastive Fact-Checking Reranker (CFR), an improved retriever for this setting. By leveraging the AVeriTeC dataset, which annotates subquestions for claims with human written answers from evidence documents, we fine-tune Contriever with a contrastive objective based on multiple training signals, including distillation from GPT-4, evaluating subquestion answers, and gold labels in the dataset. We evaluate our model on both retrieval and end-to-end veracity judgments about claims. On the AVeriTeC dataset, we find a 6\% improvement in veracity classification accuracy. We also show our gains can be transferred to FEVER, ClaimDecomp, HotpotQA, and a synthetic dataset requiring retrievers to make inferences.
Abstract:We study retrieving a set of documents that covers various perspectives on a complex and contentious question (e.g., will ChatGPT do more harm than good?). We curate a Benchmark for Retrieval Diversity for Subjective questions (BERDS), where each example consists of a question and diverse perspectives associated with the question, sourced from survey questions and debate websites. On this data, retrievers paired with a corpus are evaluated to surface a document set that contains diverse perspectives. Our framing diverges from most retrieval tasks in that document relevancy cannot be decided by simple string matches to references. Instead, we build a language model based automatic evaluator that decides whether each retrieved document contains a perspective. This allows us to evaluate the performance of three different types of corpus (Wikipedia, web snapshot, and corpus constructed on the fly with retrieved pages from the search engine) paired with retrievers. Retrieving diverse documents remains challenging, with the outputs from existing retrievers covering all perspectives on only 33.74% of the examples. We further study the impact of query expansion and diversity-focused reranking approaches and analyze retriever sycophancy. Together, we lay the foundation for future studies in retrieval diversity handling complex queries.
Abstract:Vision language models can now generate long-form answers to questions about images - long-form visual question answers (LFVQA). We contribute VizWiz-LF, a dataset of long-form answers to visual questions posed by blind and low vision (BLV) users. VizWiz-LF contains 4.2k long-form answers to 600 visual questions, collected from human expert describers and six VQA models. We develop and annotate functional roles of sentences of LFVQA and demonstrate that long-form answers contain information beyond the question answer such as explanations and suggestions. We further conduct automatic and human evaluations with BLV and sighted people to evaluate long-form answers. BLV people perceive both human-written and generated long-form answers to be plausible, but generated answers often hallucinate incorrect visual details, especially for unanswerable visual questions (e.g., blurry or irrelevant images). To reduce hallucinations, we evaluate the ability of VQA models to abstain from answering unanswerable questions across multiple prompting strategies.
Abstract:Large language models (LLMs) are increasingly being used to synthesize and reason about source code. However, the static nature of these models' knowledge does not reflect the fact that libraries and API functions they invoke are continuously evolving, with functionality being added or changing. While numerous benchmarks evaluate how LLMs can generate code, no prior work has studied how an LLMs' knowledge about code API functions can be updated. To fill this gap, we present CodeUpdateArena, a benchmark for knowledge editing in the code domain. An instance in our benchmark consists of a synthetic API function update paired with a program synthesis example that uses the updated functionality; our goal is to update an LLM to be able to solve this program synthesis example without providing documentation of the update at inference time. Compared to knowledge editing for facts encoded in text, success here is more challenging: a code LLM must correctly reason about the semantics of the modified function rather than just reproduce its syntax. Our dataset is constructed by first prompting GPT-4 to generate atomic and executable function updates. Then, for each update, we generate program synthesis examples whose code solutions are prone to use the update. Our benchmark covers updates of various types to 54 functions from seven diverse Python packages, with a total of 670 program synthesis examples. Our experiments show that prepending documentation of the update to open-source code LLMs (i.e., DeepSeek, CodeLlama) does not allow them to incorporate changes for problem solving, and existing knowledge editing techniques also have substantial room for improvement. We hope our benchmark will inspire new methods for knowledge updating in code LLMs.
Abstract:Large language models (LLMs) are commonly used for long-form question answering, which requires them to generate paragraph-length answers to complex questions. While long-form QA has been well-studied in English via many different datasets and evaluation metrics, this research has not been extended to cover most other languages. To bridge this gap, we introduce CaLMQA, a collection of 2.6K complex questions spanning 23 languages, including under-resourced, rarely-studied languages such as Fijian and Kirundi. Our dataset includes both naturally-occurring questions collected from community web forums as well as questions written by native speakers, whom we hire for this purpose. Our process yields diverse, complex questions that reflect cultural topics (e.g. traditions, laws, news) and the language usage of native speakers. We conduct automatic evaluation across a suite of open- and closed-source models using our novel metric CaLMScore, which detects incorrect language and token repetitions in answers, and observe that the quality of LLM-generated answers degrades significantly for some low-resource languages. We perform human evaluation on a subset of models and see that model performance is significantly worse for culturally specific questions than for culturally agnostic questions. Our findings highlight the need for further research in LLM multilingual capabilities and non-English LFQA evaluation.