Abstract:Language model post-training is applied to refine behaviors and unlock new skills across a wide range of recent language models, but open recipes for applying these techniques lag behind proprietary ones. The underlying training data and recipes for post-training are simultaneously the most important pieces of the puzzle and the portion with the least transparency. To bridge this gap, we introduce T\"ULU 3, a family of fully-open state-of-the-art post-trained models, alongside its data, code, and training recipes, serving as a comprehensive guide for modern post-training techniques. T\"ULU 3, which builds on Llama 3.1 base models, achieves results surpassing the instruct versions of Llama 3.1, Qwen 2.5, Mistral, and even closed models such as GPT-4o-mini and Claude 3.5-Haiku. The training algorithms for our models include supervised finetuning (SFT), Direct Preference Optimization (DPO), and a novel method we call Reinforcement Learning with Verifiable Rewards (RLVR). With T\"ULU 3, we introduce a multi-task evaluation scheme for post-training recipes with development and unseen evaluations, standard benchmark implementations, and substantial decontamination of existing open datasets on said benchmarks. We conclude with analysis and discussion of training methods that did not reliably improve performance. In addition to the T\"ULU 3 model weights and demo, we release the complete recipe -- including datasets for diverse core skills, a robust toolkit for data curation and evaluation, the training code and infrastructure, and, most importantly, a detailed report for reproducing and further adapting the T\"ULU 3 approach to more domains.
Abstract:We examine diverging preferences in human-labeled preference datasets. We develop a taxonomy of disagreement sources spanning 10 categories across four high-level classes -- task underspecification, response style, refusals, and annotation errors. We find that the majority of disagreements are in opposition with standard reward modeling approaches, which are designed with the assumption that annotator disagreement is noise. We then explore how these findings impact two areas of LLM development: reward modeling and evaluation. In our experiments, we demonstrate how standard reward modeling methods, like the Bradley-Terry model, fail to differentiate whether a given preference judgment is the result of unanimous agreement among annotators or the majority opinion among diverging user preferences. We also find that these tendencies are also echoed by popular LLM-as-Judge evaluation methods, which consistently identify a winning response in cases of diverging preferences. These findings highlight remaining challenges in LLM evaluations, which are greatly influenced by divisive features like response style, and in developing pluralistically aligned LLMs. To address these issues, we develop methods for identifying diverging preferences to mitigate their influence on evaluation and training.
Abstract:The reconfiguration of human-LM interactions from simple sentence completions to complex, multi-domain, humanlike engagements necessitates new methodologies to understand how humans choose to rely on LMs. In our work, we contend that reliance is influenced by numerous factors within the interactional context of a generation, a departure from prior work that used verbalized confidence (e.g., "I'm certain the answer is...") as the key determinant of reliance. Here, we introduce Rel-A.I., an in situ, system-level evaluation approach to measure human reliance on LM-generated epistemic markers (e.g., "I think it's..", "Undoubtedly it's..."). Using this methodology, we measure reliance rates in three emergent human-LM interaction settings: long-term interactions, anthropomorphic generations, and variable subject matter. Our findings reveal that reliance is not solely based on verbalized confidence but is significantly affected by other features of the interaction context. Prior interactions, anthropomorphic cues, and subject domain all contribute to reliance variability. An expression such as, "I'm pretty sure it's...", can vary up to 20% in reliance frequency depending on its interactional context. Our work underscores the importance of context in understanding human reliance and offers future designers and researchers with a methodology to conduct such measurements.
Abstract:As natural language becomes the default interface for human-AI interaction, there is a critical need for LMs to appropriately communicate uncertainties in downstream applications. In this work, we investigate how LMs incorporate confidence about their responses via natural language and how downstream users behave in response to LM-articulated uncertainties. We examine publicly deployed models and find that LMs are unable to express uncertainties when answering questions even when they produce incorrect responses. LMs can be explicitly prompted to express confidences, but tend to be overconfident, resulting in high error rates (on average 47%) among confident responses. We test the risks of LM overconfidence by running human experiments and show that users rely heavily on LM generations, whether or not they are marked by certainty. Lastly, we investigate the preference-annotated datasets used in RLHF alignment and find that humans have a bias against texts with uncertainty. Our work highlights a new set of safety harms facing human-LM interactions and proposes design recommendations and mitigating strategies moving forward.
Abstract:Effective cyber threat recognition and prevention demand comprehensible forecasting systems, as prior approaches commonly offer limited and, ultimately, unconvincing information. We introduce Simplified Plaintext Language (SPLAIN), a natural language generator that converts warning data into user-friendly cyber threat explanations. SPLAIN is designed to generate clear, actionable outputs, incorporating hierarchically organized explanatory details about input data and system functionality. Given the inputs of individual sensor-induced forecasting signals and an overall warning from a fusion module, SPLAIN queries each signal for information on contributing sensors and data signals. This collected data is processed into a coherent English explanation, encompassing forecasting, sensing, and data elements for user review. SPLAIN's template-based approach ensures consistent warning structure and vocabulary. SPLAIN's hierarchical output structure allows each threat and its components to be expanded to reveal underlying explanations on demand. Our conclusions emphasize the need for designers to specify the "how" and "why" behind cyber warnings, advocate for simple structured templates in generating consistent explanations, and recognize that direct causal links in Machine Learning approaches may not always be identifiable, requiring some explanations to focus on general methodologies, such as model and training data.
Abstract:Language technologies that accurately model the dynamics of events must perform commonsense reasoning. Existing work evaluating commonsense reasoning focuses on making inferences about common, everyday situations. To instead investigate the ability to model unusual, unexpected, and unlikely situations, we explore the task of uncommonsense abductive reasoning. Given a piece of context with an unexpected outcome, this task requires reasoning abductively to generate a natural language explanation that makes the unexpected outcome more likely in the context. To this end, we curate and release a new English language corpus called UNcommonsense. We characterize the differences between the performance of human explainers and the best performing large language models, finding that model-enhanced human-written explanations achieve the highest quality by trading off between specificity and diversity. Finally, we experiment with several online imitation learning algorithms to train open and accessible language models on this task. When compared with the vanilla supervised fine-tuning approach, these methods consistently reduce lose rates on both common and uncommonsense abductive reasoning judged by human evaluators.
Abstract:The recent wave of generative AI has sparked unprecedented global attention, with both excitement and concern over potentially superhuman levels of artificial intelligence: models now take only seconds to produce outputs that would challenge or exceed the capabilities even of expert humans. At the same time, models still show basic errors in understanding that would not be expected even in non-expert humans. This presents us with an apparent paradox: how do we reconcile seemingly superhuman capabilities with the persistence of errors that few humans would make? In this work, we posit that this tension reflects a divergence in the configuration of intelligence in today's generative models relative to intelligence in humans. Specifically, we propose and test the Generative AI Paradox hypothesis: generative models, having been trained directly to reproduce expert-like outputs, acquire generative capabilities that are not contingent upon -- and can therefore exceed -- their ability to understand those same types of outputs. This contrasts with humans, for whom basic understanding almost always precedes the ability to generate expert-level outputs. We test this hypothesis through controlled experiments analyzing generation vs. understanding in generative models, across both language and image modalities. Our results show that although models can outperform humans in generation, they consistently fall short of human capabilities in measures of understanding, as well as weaker correlation between generation and understanding performance, and more brittleness to adversarial inputs. Our findings support the hypothesis that models' generative capability may not be contingent upon understanding capability, and call for caution in interpreting artificial intelligence by analogy to human intelligence.
Abstract:Large language models (LLMs) show amazing proficiency and fluency in the use of language. Does this mean that they have also acquired insightful linguistic knowledge about the language, to an extent that they can serve as an "expert linguistic annotator"? In this paper, we examine the successes and limitations of the GPT-3, ChatGPT, and GPT-4 models in analysis of sentence meaning structure, focusing on the Abstract Meaning Representation (AMR; Banarescu et al. 2013) parsing formalism, which provides rich graphical representations of sentence meaning structure while abstracting away from surface forms. We compare models' analysis of this semantic structure across two settings: 1) direct production of AMR parses based on zero- and few-shot prompts, and 2) indirect partial reconstruction of AMR via metalinguistic natural language queries (e.g., "Identify the primary event of this sentence, and the predicate corresponding to that event."). Across these settings, we find that models can reliably reproduce the basic format of AMR, and can often capture core event, argument, and modifier structure -- however, model outputs are prone to frequent and major errors, and holistic analysis of parse acceptability shows that even with few-shot demonstrations, models have virtually 0% success in producing fully accurate parses. Eliciting natural language responses produces similar patterns of errors. Overall, our findings indicate that these models out-of-the-box can capture aspects of semantic structure, but there remain key limitations in their ability to support fully accurate semantic analyses or parses.
Abstract:Computer vision often treats perception as objective, and this assumption gets reflected in the way that datasets are collected and models are trained. For instance, image descriptions in different languages are typically assumed to be translations of the same semantic content. However, work in cross-cultural psychology and linguistics has shown that individuals differ in their visual perception depending on their cultural background and the language they speak. In this paper, we demonstrate significant differences in semantic content across languages in both dataset and model-produced captions. When data is multilingual as opposed to monolingual, captions have higher semantic coverage on average, as measured by scene graph, embedding, and linguistic complexity. For example, multilingual captions have on average 21.8% more objects, 24.5% more relations, and 27.1% more attributes than a set of monolingual captions. Moreover, models trained on content from different languages perform best against test data from those languages, while those trained on multilingual content perform consistently well across all evaluation data compositions. Our research provides implications for how diverse modes of perception can improve image understanding.
Abstract:Warning: This paper contains content that may be offensive or upsetting. Understanding the harms and offensiveness of statements requires reasoning about the social and situational context in which statements are made. For example, the utterance "your English is very good" may implicitly signal an insult when uttered by a white man to a non-white colleague, but uttered by an ESL teacher to their student would be interpreted as a genuine compliment. Such contextual factors have been largely ignored by previous approaches to toxic language detection. We introduce COBRA frames, the first context-aware formalism for explaining the intents, reactions, and harms of offensive or biased statements grounded in their social and situational context. We create COBRACORPUS, a dataset of 33k potentially offensive statements paired with machine-generated contexts and free-text explanations of offensiveness, implied biases, speaker intents, and listener reactions. To study the contextual dynamics of offensiveness, we train models to generate COBRA explanations, with and without access to the context. We find that explanations by context-agnostic models are significantly worse than by context-aware ones, especially in situations where the context inverts the statement's offensiveness (29% accuracy drop). Our work highlights the importance and feasibility of contextualized NLP by modeling social factors.