Shammie
Abstract:Queer people are often discussed as targets of bias, harm, or discrimination in research on generative AI. However, the specific ways that queer people engage with generative AI, and thus possible uses that support queer people, have yet to be explored. We conducted a workshop study with 13 queer artists, during which we gave participants access to GPT-4 and DALL-E 3 and facilitated group sensemaking activities. We found our participants struggled to use these models due to various normative values embedded in their designs, such as hyper-positivity and anti-sexuality. We describe various strategies our participants developed to overcome these models' limitations and how, nevertheless, our participants found value in these highly-normative technologies. Drawing on queer feminist theory, we discuss implications for the conceptualization of "state-of-the-art" models and consider how FAccT researchers might support queer alternatives.
Abstract:Large Language Models (LLMs) have demonstrated remarkable capabilities in reasoning tasks, leading to their widespread deployment. However, recent studies have highlighted concerning biases in these models, particularly in their handling of dialectal variations like African American English (AAE). In this work, we systematically investigate dialectal disparities in LLM reasoning tasks. We develop an experimental framework comparing LLM performance given Standard American English (SAE) and AAE prompts, combining LLM-based dialect conversion with established linguistic analyses. We find that LLMs consistently produce less accurate responses and simpler reasoning chains and explanations for AAE inputs compared to equivalent SAE questions, with disparities most pronounced in social science and humanities domains. These findings highlight systematic differences in how LLMs process and reason about different language varieties, raising important questions about the development and deployment of these systems in our multilingual and multidialectal world. Our code repository is publicly available at https://github.com/Runtaozhou/dialect_bias_eval.
Abstract:In retrieval augmented generation (RAG) systems, each individual component -- the LLM, embedder, and corpus -- could introduce biases in the form of skews towards outputting certain perspectives or identities. In this work, we study the conflict between biases of each component and their relationship to the overall bias of the RAG system, which we call bias conflict. Examining both gender and political biases as case studies, we show that bias conflict can be characterized through a linear relationship among components despite its complexity in 6 different LLMs. Through comprehensive fine-tuning experiments creating 120 differently biased embedders, we demonstrate how to control bias while maintaining utility and reveal the importance of reverse-biasing the embedder to mitigate bias in the overall system. Additionally, we find that LLMs and tasks exhibit varying sensitivities to the embedder bias, a crucial factor to consider for debiasing. Our results underscore that a fair RAG system can be better achieved by carefully controlling the bias of the embedder rather than increasing its fairness.
Abstract:Gestures are an integral part of non-verbal communication, with meanings that vary across cultures, and misinterpretations that can have serious social and diplomatic consequences. As AI systems become more integrated into global applications, ensuring they do not inadvertently perpetuate cultural offenses is critical. To this end, we introduce Multi-Cultural Set of Inappropriate Gestures and Nonverbal Signs (MC-SIGNS), a dataset of 288 gesture-country pairs annotated for offensiveness, cultural significance, and contextual factors across 25 gestures and 85 countries. Through systematic evaluation using MC-SIGNS, we uncover critical limitations: text-to-image (T2I) systems exhibit strong US-centric biases, performing better at detecting offensive gestures in US contexts than in non-US ones; large language models (LLMs) tend to over-flag gestures as offensive; and vision-language models (VLMs) default to US-based interpretations when responding to universal concepts like wishing someone luck, frequently suggesting culturally inappropriate gestures. These findings highlight the urgent need for culturally-aware AI safety mechanisms to ensure equitable global deployment of AI technologies.
Abstract:Large language models (LLMs) often fail to ask effective questions under uncertainty, making them unreliable in domains where proactive information-gathering is essential for decisionmaking. We present ALFA, a framework that improves LLM question-asking by (i) decomposing the notion of a "good" question into a set of theory-grounded attributes (e.g., clarity, relevance), (ii) controllably synthesizing attribute-specific question variations, and (iii) aligning models via preference-based optimization to explicitly learn to ask better questions along these fine-grained attributes. Focusing on clinical reasoning as a case study, we introduce the MediQ-AskDocs dataset, composed of 17k real-world clinical interactions augmented with 80k attribute-specific preference pairs of follow-up questions, as well as a novel expert-annotated interactive healthcare QA task to evaluate question-asking abilities. Models aligned with ALFA reduce diagnostic errors by 56.6% on MediQ-AskDocs compared to SOTA instruction-tuned LLMs, with a question-level win-rate of 64.4% and strong generalizability. Our findings suggest that explicitly guiding question-asking with structured, fine-grained attributes offers a scalable path to improve LLMs, especially in expert application domains.
Abstract:AI agents are increasingly being deployed to automate tasks, often based on ambiguous and underspecified user instructions. Making unwarranted assumptions and failing to ask clarifying questions can lead to suboptimal outcomes, safety risks due to tool misuse, and wasted computational resources. In this work, we study the ability of LLM agents to handle ambiguous instructions in interactive code generation settings by evaluating proprietary and open-weight models on their performance across three key steps: (a) leveraging interactivity to improve performance in ambiguous scenarios, (b) detecting ambiguity, and (c) asking targeted questions. Our findings reveal that models struggle to distinguish between well-specified and underspecified instructions. However, when models interact for underspecified inputs, they effectively obtain vital information from the user, leading to significant improvements in performance and underscoring the value of effective interaction. Our study highlights critical gaps in how current state-of-the-art models handle ambiguity in complex software engineering tasks and structures the evaluation into distinct steps to enable targeted improvements.
Abstract:Preference alignment via reward models helps build safe, helpful, and reliable large language models (LLMs). However, subjectivity in preference judgments and the lack of representative sampling in preference data collection can introduce new biases, hindering reward models' fairness and equity. In this work, we introduce a framework for evaluating dialect biases in reward models and conduct a case study on biases against African American Language (AAL) through several experiments comparing reward model preferences and behavior on paired White Mainstream English (WME) and both machine-translated and human-written AAL corpora. We show that reward models are less aligned with human preferences when processing AAL texts vs. WME ones (-4\% accuracy on average), frequently disprefer AAL-aligned texts vs. WME-aligned ones, and steer conversations toward WME, even when prompted with AAL texts. Our findings provide a targeted analysis of anti-AAL biases at a relatively understudied stage in LLM development, highlighting representational harms and ethical questions about the desired behavior of LLMs concerning AAL.
Abstract:Designing structured visuals such as presentation slides is essential for communicative needs, necessitating both content creation and visual planning skills. In this work, we tackle the challenge of automated slide generation, where models produce slide presentations from natural language (NL) instructions. We first introduce the SlidesBench benchmark, the first benchmark for slide generation with 7k training and 585 testing examples derived from 310 slide decks across 10 domains. SlidesBench supports evaluations that are (i)reference-based to measure similarity to a target slide, and (ii)reference-free to measure the design quality of generated slides alone. We benchmark end-to-end image generation and program generation methods with a variety of models, and find that programmatic methods produce higher-quality slides in user-interactable formats. Built on the success of program generation, we create AutoPresent, an 8B Llama-based model trained on 7k pairs of instructions paired with code for slide generation, and achieve results comparable to the closed-source model GPT-4o. We further explore iterative design refinement where the model is tasked to self-refine its own output, and we found that this process improves the slide's quality. We hope that our work will provide a basis for future work on generating structured visuals.
Abstract:Obeying precise constraints on top of multiple external attributes is a common computational problem underlying seemingly different domains, from controlled text generation to protein engineering. Existing language model (LM) controllability methods for multi-attribute constraint satisfaction often rely on specialized architectures or gradient-based classifiers, limiting their flexibility to work with arbitrary black-box evaluators and pretrained models. Current general-purpose large language models, while capable, cannot achieve fine-grained multi-attribute control over external attributes. Thus, we create Multi-Attribute Constraint Satisfaction (MACS), a generalized method capable of finetuning language models on any sequential domain to satisfy user-specified constraints on multiple external real-value attributes. Our method trains LMs as editors by sampling diverse multi-attribute edit pairs from an initial set of paraphrased outputs. During inference, LM iteratively improves upon its previous solution to satisfy constraints for all attributes by leveraging our designed constraint satisfaction reward. We additionally experiment with reward-weighted behavior cloning to further improve the constraint satisfaction rate of LMs. To evaluate our approach, we present a new Fine-grained Constraint Satisfaction (FineCS) benchmark, featuring two challenging tasks: (1) Text Style Transfer, where the goal is to simultaneously modify the sentiment and complexity of reviews, and (2) Protein Design, focusing on modulating fluorescence and stability of Green Fluorescent Proteins (GFP). Our empirical results show that MACS achieves the highest threshold satisfaction in both FineCS tasks, outperforming strong domain-specific baselines. Our work opens new avenues for generalized and real-value multi-attribute control, with implications for diverse applications spanning NLP and bioinformatics.
Abstract:AI companions based on large language models can role-play and converse very naturally. When value conflicts arise between the AI companion and the user, it may offend or upset the user. Yet, little research has examined such conflicts. We first conducted a formative study that analyzed 151 user complaints about conflicts with AI companions, providing design implications for our study. Based on these, we created Minion, a technology probe to help users resolve human-AI value conflicts. Minion applies a user-empowerment intervention method that provides suggestions by combining expert-driven and user-driven conflict resolution strategies. We conducted a technology probe study, creating 40 value conflict scenarios on Character.AI and Talkie. 22 participants completed 274 tasks and successfully resolved conflicts 94.16% of the time. We summarize user responses, preferences, and needs in resolving value conflicts, and propose design implications to reduce conflicts and empower users to resolve them more effectively.