Abstract:AI companions based on large language models can role-play and converse very naturally. When value conflicts arise between the AI companion and the user, it may offend or upset the user. Yet, little research has examined such conflicts. We first conducted a formative study that analyzed 151 user complaints about conflicts with AI companions, providing design implications for our study. Based on these, we created Minion, a technology probe to help users resolve human-AI value conflicts. Minion applies a user-empowerment intervention method that provides suggestions by combining expert-driven and user-driven conflict resolution strategies. We conducted a technology probe study, creating 40 value conflict scenarios on Character.AI and Talkie. 22 participants completed 274 tasks and successfully resolved conflicts 94.16% of the time. We summarize user responses, preferences, and needs in resolving value conflicts, and propose design implications to reduce conflicts and empower users to resolve them more effectively.
Abstract:In this work, we tackle the challenge of embedding realistic human personality traits into LLMs. Previous approaches have primarily focused on prompt-based methods that describe the behavior associated with the desired personality traits, suffering from realism and validity issues. To address these limitations, we introduce BIG5-CHAT, a large-scale dataset containing 100,000 dialogues designed to ground models in how humans express their personality in text. Leveraging this dataset, we explore Supervised Fine-Tuning and Direct Preference Optimization as training-based methods to align LLMs more naturally with human personality patterns. Our methods outperform prompting on personality assessments such as BFI and IPIP-NEO, with trait correlations more closely matching human data. Furthermore, our experiments reveal that models trained to exhibit higher conscientiousness, higher agreeableness, lower extraversion, and lower neuroticism display better performance on reasoning tasks, aligning with psychological findings on how these traits impact human cognitive performance. To our knowledge, this work is the first comprehensive study to demonstrate how training-based methods can shape LLM personalities through learning from real human behaviors.
Abstract:AI agents are increasingly autonomous in their interactions with human users and tools, leading to increased interactional safety risks. We present HAICOSYSTEM, a framework examining AI agent safety within diverse and complex social interactions. HAICOSYSTEM features a modular sandbox environment that simulates multi-turn interactions between human users and AI agents, where the AI agents are equipped with a variety of tools (e.g., patient management platforms) to navigate diverse scenarios (e.g., a user attempting to access other patients' profiles). To examine the safety of AI agents in these interactions, we develop a comprehensive multi-dimensional evaluation framework that uses metrics covering operational, content-related, societal, and legal risks. Through running 1840 simulations based on 92 scenarios across seven domains (e.g., healthcare, finance, education), we demonstrate that HAICOSYSTEM can emulate realistic user-AI interactions and complex tool use by AI agents. Our experiments show that state-of-the-art LLMs, both proprietary and open-sourced, exhibit safety risks in over 50\% cases, with models generally showing higher risks when interacting with simulated malicious users. Our findings highlight the ongoing challenge of building agents that can safely navigate complex interactions, particularly when faced with malicious users. To foster the AI agent safety ecosystem, we release a code platform that allows practitioners to create custom scenarios, simulate interactions, and evaluate the safety and performance of their agents.
Abstract:To be safely and successfully deployed, LLMs must simultaneously satisfy truthfulness and utility goals. Yet, often these two goals compete (e.g., an AI agent assisting a used car salesman selling a car with flaws), partly due to ambiguous or misleading user instructions. We propose AI-LieDar, a framework to study how LLM-based agents navigate scenarios with utility-truthfulness conflicts in a multi-turn interactive setting. We design a set of realistic scenarios where language agents are instructed to achieve goals that are in conflict with being truthful during a multi-turn conversation with simulated human agents. To evaluate the truthfulness at large scale, we develop a truthfulness detector inspired by psychological literature to assess the agents' responses. Our experiment demonstrates that all models are truthful less than 50% of the time, although truthfulness and goal achievement (utility) rates vary across models. We further test the steerability of LLMs towards truthfulness, finding that models follow malicious instructions to deceive, and even truth-steered models can still lie. These findings reveal the complex nature of truthfulness in LLMs and underscore the importance of further research to ensure the safe and reliable deployment of LLMs and AI agents.
Abstract:Multi-agent systems, powered by large language models, have shown great abilities across various tasks due to the collaboration of expert agents, each focusing on a specific domain. However, when agents are deployed separately, there is a risk that malicious users may introduce malicious agents who generate incorrect or irrelevant results that are too stealthy to be identified by other non-specialized agents. Therefore, this paper investigates two essential questions: (1) What is the resilience of various multi-agent system structures (e.g., A$\rightarrow$B$\rightarrow$C, A$\leftrightarrow$B$\leftrightarrow$C) under malicious agents, on different downstream tasks? (2) How can we increase system resilience to defend against malicious agents? To simulate malicious agents, we devise two methods, AutoTransform and AutoInject, to transform any agent into a malicious one while preserving its functional integrity. We run comprehensive experiments on four downstream multi-agent systems tasks, namely code generation, math problems, translation, and text evaluation. Results suggest that the "hierarchical" multi-agent structure, i.e., A$\rightarrow$(B$\leftrightarrow$C), exhibits superior resilience with the lowest performance drop of $23.6\%$, compared to $46.4\%$ and $49.8\%$ of other two structures. Additionally, we show the promise of improving multi-agent system resilience by demonstrating that two defense methods, introducing an additional agent to review and correct messages or mechanisms for each agent to challenge others' outputs, can enhance system resilience. Our code and data are available at https://github.com/CUHK-ARISE/MAS-Resilience.
Abstract:General-purpose artificial intelligence (AI) systems are built on massive swathes of public web data, assembled into corpora such as C4, RefinedWeb, and Dolma. To our knowledge, we conduct the first, large-scale, longitudinal audit of the consent protocols for the web domains underlying AI training corpora. Our audit of 14,000 web domains provides an expansive view of crawlable web data and how codified data use preferences are changing over time. We observe a proliferation of AI-specific clauses to limit use, acute differences in restrictions on AI developers, as well as general inconsistencies between websites' expressed intentions in their Terms of Service and their robots.txt. We diagnose these as symptoms of ineffective web protocols, not designed to cope with the widespread re-purposing of the internet for AI. Our longitudinal analyses show that in a single year (2023-2024) there has been a rapid crescendo of data restrictions from web sources, rendering ~5%+ of all tokens in C4, or 28%+ of the most actively maintained, critical sources in C4, fully restricted from use. For Terms of Service crawling restrictions, a full 45% of C4 is now restricted. If respected or enforced, these restrictions are rapidly biasing the diversity, freshness, and scaling laws for general-purpose AI systems. We hope to illustrate the emerging crises in data consent, for both developers and creators. The foreclosure of much of the open web will impact not only commercial AI, but also non-commercial AI and academic research.
Abstract:Recent advances in large language models (LLMs) have led to their extensive global deployment, and ensuring their safety calls for comprehensive and multilingual toxicity evaluations. However, existing toxicity benchmarks are overwhelmingly focused on English, posing serious risks to deploying LLMs in other languages. We address this by introducing PolygloToxicityPrompts (PTP), the first large-scale multilingual toxicity evaluation benchmark of 425K naturally occurring prompts spanning 17 languages. We overcome the scarcity of naturally occurring toxicity in web-text and ensure coverage across languages with varying resources by automatically scraping over 100M web-text documents. Using PTP, we investigate research questions to study the impact of model size, prompt language, and instruction and preference-tuning methods on toxicity by benchmarking over 60 LLMs. Notably, we find that toxicity increases as language resources decrease or model size increases. Although instruction- and preference-tuning reduce toxicity, the choice of preference-tuning method does not have any significant impact. Our findings shed light on crucial shortcomings of LLM safeguarding and highlight areas for future research.
Abstract:Recent advances in large language models (LLM) have enabled richer social simulations, allowing for the study of various social phenomena with LLM-based agents. However, most work has used an omniscient perspective on these simulations (e.g., single LLM to generate all interlocutors), which is fundamentally at odds with the non-omniscient, information asymmetric interactions that humans have. To examine these differences, we develop an evaluation framework to simulate social interactions with LLMs in various settings (omniscient, non-omniscient). Our experiments show that interlocutors simulated omnisciently are much more successful at accomplishing social goals compared to non-omniscient agents, despite the latter being the more realistic setting. Furthermore, we demonstrate that learning from omniscient simulations improves the apparent naturalness of interactions but scarcely enhances goal achievement in cooperative scenarios. Our findings indicate that addressing information asymmetry remains a fundamental challenge for LLM-based agents.
Abstract:Theory of mind (ToM) evaluations currently focus on testing models using passive narratives that inherently lack interactivity. We introduce FANToM, a new benchmark designed to stress-test ToM within information-asymmetric conversational contexts via question answering. Our benchmark draws upon important theoretical requisites from psychology and necessary empirical considerations when evaluating large language models (LLMs). In particular, we formulate multiple types of questions that demand the same underlying reasoning to identify illusory or false sense of ToM capabilities in LLMs. We show that FANToM is challenging for state-of-the-art LLMs, which perform significantly worse than humans even with chain-of-thought reasoning or fine-tuning.
Abstract:The interactive use of large language models (LLMs) in AI assistants (at work, home, etc.) introduces a new set of inference-time privacy risks: LLMs are fed different types of information from multiple sources in their inputs and are expected to reason about what to share in their outputs, for what purpose and with whom, within a given context. In this work, we draw attention to the highly critical yet overlooked notion of contextual privacy by proposing ConfAIde, a benchmark designed to identify critical weaknesses in the privacy reasoning capabilities of instruction-tuned LLMs. Our experiments show that even the most capable models such as GPT-4 and ChatGPT reveal private information in contexts that humans would not, 39% and 57% of the time, respectively. This leakage persists even when we employ privacy-inducing prompts or chain-of-thought reasoning. Our work underscores the immediate need to explore novel inference-time privacy-preserving approaches, based on reasoning and theory of mind.