Abstract:We present RepoST, a scalable method to construct environments that provide execution feedback for repository-level code generation for both training and evaluation. Unlike existing works that aim to build entire repositories for execution, which is challenging for both human and LLMs, we provide execution feedback with sandbox testing, which isolates a given target function and its dependencies to a separate script for testing. Sandbox testing reduces the complexity of external dependencies and enables constructing environments at a large scale. We use our method to construct RepoST-Train, a large-scale train set with 7,415 functions from 832 repositories. Training with the execution feedback provided by RepoST-Train leads to a performance gain of 5.5% Pass@1 on HumanEval and 3.5% Pass@1 on RepoEval. We also build an evaluation dataset, RepoST-Eval, and benchmark 12 code generation models.
Abstract:The recent DeepSeek-R1 release has demonstrated the immense potential of reinforcement learning (RL) in enhancing the general reasoning capabilities of large language models (LLMs). While DeepSeek-R1 and other follow-up work primarily focus on applying RL to competitive coding and math problems, this paper introduces SWE-RL, the first approach to scale RL-based LLM reasoning for real-world software engineering. Leveraging a lightweight rule-based reward (e.g., the similarity score between ground-truth and LLM-generated solutions), SWE-RL enables LLMs to autonomously recover a developer's reasoning processes and solutions by learning from extensive open-source software evolution data -- the record of a software's entire lifecycle, including its code snapshots, code changes, and events such as issues and pull requests. Trained on top of Llama 3, our resulting reasoning model, Llama3-SWE-RL-70B, achieves a 41.0% solve rate on SWE-bench Verified -- a human-verified collection of real-world GitHub issues. To our knowledge, this is the best performance reported for medium-sized (<100B) LLMs to date, even comparable to leading proprietary LLMs like GPT-4o. Surprisingly, despite performing RL solely on software evolution data, Llama3-SWE-RL has even emerged with generalized reasoning skills. For example, it shows improved results on five out-of-domain tasks, namely, function coding, library use, code reasoning, mathematics, and general language understanding, whereas a supervised-finetuning baseline even leads to performance degradation on average. Overall, SWE-RL opens up a new direction to improve the reasoning capabilities of LLMs through reinforcement learning on massive software engineering data.
Abstract:In strategic multi-agent sequential interactions, detecting dynamic coalition structures is crucial for understanding how self-interested agents coordinate to influence outcomes. However, natural-language-based interactions introduce unique challenges to coalition detection due to ambiguity over intents and difficulty in modeling players' subjective perspectives. We propose a new method that leverages recent advancements in large language models and game theory to predict dynamic multilateral coalition formation in Diplomacy, a strategic multi-agent game where agents negotiate coalitions using natural language. The method consists of two stages. The first stage extracts the set of agreements discussed by two agents in their private dialogue, by combining a parsing-based filtering function with a fine-tuned language model trained to predict player intents. In the second stage, we define a new metric using the concept of subjective rationalizability from hypergame theory to evaluate the expected value of an agreement for each player. We then compute this metric for each agreement identified in the first stage by assessing the strategic value of the agreement for both players and taking into account the subjective belief of one player that the second player would honor the agreement. We demonstrate that our method effectively detects potential coalition structures in online Diplomacy gameplay by assigning high values to agreements likely to be honored and low values to those likely to be violated. The proposed method provides foundational insights into coalition formation in multi-agent environments with language-based negotiation and offers key directions for future research on the analysis of complex natural language-based interactions between agents.
Abstract:Designing structured visuals such as presentation slides is essential for communicative needs, necessitating both content creation and visual planning skills. In this work, we tackle the challenge of automated slide generation, where models produce slide presentations from natural language (NL) instructions. We first introduce the SlidesBench benchmark, the first benchmark for slide generation with 7k training and 585 testing examples derived from 310 slide decks across 10 domains. SlidesBench supports evaluations that are (i)reference-based to measure similarity to a target slide, and (ii)reference-free to measure the design quality of generated slides alone. We benchmark end-to-end image generation and program generation methods with a variety of models, and find that programmatic methods produce higher-quality slides in user-interactable formats. Built on the success of program generation, we create AutoPresent, an 8B Llama-based model trained on 7k pairs of instructions paired with code for slide generation, and achieve results comparable to the closed-source model GPT-4o. We further explore iterative design refinement where the model is tasked to self-refine its own output, and we found that this process improves the slide's quality. We hope that our work will provide a basis for future work on generating structured visuals.
Abstract:Factuality evaluation aims to detect factual errors produced by language models (LMs) and hence guide the development of more factual models. Towards this goal, we train a factuality evaluator, FenCE, that provides LM generators with claim-level factuality feedback. We conduct data augmentation on a combination of public judgment datasets to train FenCE to (1) generate textual critiques along with scores and (2) make claim-level judgment based on diverse source documents obtained by various tools. We then present a framework that leverages FenCE to improve the factuality of LM generators by constructing training data. Specifically, we generate a set of candidate responses, leverage FenCE to revise and score each response without introducing lesser-known facts, and train the generator by preferring highly scored revised responses. Experiments show that our data augmentation methods improve the evaluator's accuracy by 2.9% on LLM-AggreFact. With FenCE, we improve Llama3-8B-chat's factuality rate by 14.45% on FActScore, outperforming state-of-the-art factuality finetuning methods by 6.96%.
Abstract:Chess has long been a testbed for AI's quest to match human intelligence, and in recent years, chess AI systems have surpassed the strongest humans at the game. However, these systems are not human-aligned; they are unable to match the skill levels of all human partners or model human-like behaviors beyond piece movement. In this paper, we introduce Allie, a chess-playing AI designed to bridge the gap between artificial and human intelligence in this classic game. Allie is trained on log sequences of real chess games to model the behaviors of human chess players across the skill spectrum, including non-move behaviors such as pondering times and resignations In offline evaluations, we find that Allie exhibits humanlike behavior: it outperforms the existing state-of-the-art in human chess move prediction and "ponders" at critical positions. The model learns to reliably assign reward at each game state, which can be used at inference as a reward function in a novel time-adaptive Monte-Carlo tree search (MCTS) procedure, where the amount of search depends on how long humans would think in the same positions. Adaptive search enables remarkable skill calibration; in a large-scale online evaluation against players with ratings from 1000 to 2600 Elo, our adaptive search method leads to a skill gap of only 49 Elo on average, substantially outperforming search-free and standard MCTS baselines. Against grandmaster-level (2500 Elo) opponents, Allie with adaptive search exhibits the strength of a fellow grandmaster, all while learning exclusively from humans.
Abstract:The task of automated code review has recently gained a lot of attention from the machine learning community. However, current review comment evaluation metrics rely on comparisons with a human-written reference for a given code change (also called a diff), even though code review is a one-to-many problem like generation and summarization with many "valid reviews" for a diff. To tackle these issues we develop a CRScore - a reference-free metric to measure dimensions of review quality like conciseness, comprehensiveness, and relevance. We design CRScore to evaluate reviews in a way that is grounded in claims and potential issues detected in the code by LLMs and static analyzers. We demonstrate that CRScore can produce valid, fine-grained scores of review quality that have the greatest alignment with human judgment (0.54 Spearman correlation) and are more sensitive than reference-based metrics. We also release a corpus of 2.6k human-annotated review quality scores for machine-generated and GitHub review comments to support the development of automated metrics.
Abstract:Despite the potential of language model-based agents to solve real-world tasks such as web navigation, current methods still struggle with long-horizon tasks with complex action trajectories. In contrast, humans can flexibly solve complex tasks by learning reusable task workflows from past experiences and using them to guide future actions. To build agents that can similarly benefit from this process, we introduce Agent Workflow Memory (AWM), a method for inducing commonly reused routines, i.e., workflows, and selectively providing workflows to the agent to guide subsequent generations. AWM flexibly applies to both offline and online scenarios, where agents induce workflows from training examples beforehand or from test queries on the fly. We experiment on two major web navigation benchmarks -- Mind2Web and WebArena -- that collectively cover 1000+ tasks from 200+ domains across travel, shopping, and social media, among others. AWM substantially improves the baseline results by 24.6% and 51.1% relative success rate on Mind2Web and WebArena while reducing the number of steps taken to solve WebArena tasks successfully. Furthermore, online AWM robustly generalizes in cross-task, website, and domain evaluations, surpassing baselines from 8.9 to 14.0 absolute points as train-test task distribution gaps widen.
Abstract:Although large language models (LLMs) have been largely successful in generating functionally correct programs, conditioning models to produce efficient solutions while ensuring correctness remains a challenge. Further, unreliability in benchmarking code efficiency is a hurdle across varying hardware specifications for popular interpreted languages such as Python. In this paper, we present ECCO, a reproducible benchmark for evaluating program efficiency via two paradigms: natural language (NL) based code generation and history-based code editing. On ECCO, we adapt and thoroughly investigate the three most promising existing LLM-based approaches: in-context learning, iterative refinement with execution or NL feedback, and fine-tuning conditioned on execution and editing history. While most methods degrade functional correctness and moderately increase program efficiency, we find that adding execution information often helps maintain functional correctness, and NL feedback enhances more on efficiency. We release our benchmark to support future work on LLM-based generation of efficient code.
Abstract:Autonomous agents powered by language models (LMs) have demonstrated promise in their ability to perform decision-making tasks such as web automation. However, a key limitation remains: LMs, primarily optimized for natural language understanding and generation, struggle with multi-step reasoning, planning, and using environmental feedback when attempting to solve realistic computer tasks. Towards addressing this, we propose an inference-time search algorithm for LM agents to explicitly perform exploration and multi-step planning in interactive web environments. Our approach is a form of best-first tree search that operates within the actual environment space, and is complementary with most existing state-of-the-art agents. It is the first tree search algorithm for LM agents that shows effectiveness on realistic web tasks. On the challenging VisualWebArena benchmark, applying our search algorithm on top of a GPT-4o agent yields a 39.7% relative increase in success rate compared to the same baseline without search, setting a state-of-the-art success rate of 26.4%. On WebArena, search also yields a 28.0% relative improvement over a baseline agent, setting a competitive success rate of 19.2%. Our experiments highlight the effectiveness of search for web agents, and we demonstrate that performance scales with increased test-time compute. We conduct a thorough analysis of our results to highlight improvements from search, limitations, and promising directions for future work. Our code and models are publicly released at https://jykoh.com/search-agents.