Abstract:This paper presents BrepGen, a diffusion-based generative approach that directly outputs a Boundary representation (B-rep) Computer-Aided Design (CAD) model. BrepGen represents a B-rep model as a novel structured latent geometry in a hierarchical tree. With the root node representing a whole CAD solid, each element of a B-rep model (i.e., a face, an edge, or a vertex) progressively turns into a child-node from top to bottom. B-rep geometry information goes into the nodes as the global bounding box of each primitive along with a latent code describing the local geometric shape. The B-rep topology information is implicitly represented by node duplication. When two faces share an edge, the edge curve will appear twice in the tree, and a T-junction vertex with three incident edges appears six times in the tree with identical node features. Starting from the root and progressing to the leaf, BrepGen employs Transformer-based diffusion models to sequentially denoise node features while duplicated nodes are detected and merged, recovering the B-Rep topology information. Extensive experiments show that BrepGen sets a new milestone in CAD B-rep generation, surpassing existing methods on various benchmarks. Results on our newly collected furniture dataset further showcase its exceptional capability in generating complicated geometry. While previous methods were limited to generating simple prismatic shapes, BrepGen incorporates free-form and doubly-curved surfaces for the first time. Additional applications of BrepGen include CAD autocomplete and design interpolation. The code, pretrained models, and dataset will be released.
Abstract:The automated assembly of complex products requires a system that can automatically plan a physically feasible sequence of actions for assembling many parts together. In this paper, we present ASAP, a physics-based planning approach for automatically generating such a sequence for general-shaped assemblies. ASAP accounts for gravity to design a sequence where each sub-assembly is physically stable with a limited number of parts being held and a support surface. We apply efficient tree search algorithms to reduce the combinatorial complexity of determining such an assembly sequence. The search can be guided by either geometric heuristics or graph neural networks trained on data with simulation labels. Finally, we show the superior performance of ASAP at generating physically realistic assembly sequence plans on a large dataset of hundreds of complex product assemblies. We further demonstrate the applicability of ASAP on both simulation and real-world robotic setups. Project website: asap.csail.mit.edu
Abstract:Interpreting the learned features of vision models has posed a longstanding challenge in the field of machine learning. To address this issue, we propose a novel method that leverages the capabilities of large language models (LLMs) to interpret the learned features of pre-trained image classifiers. Our method, called TExplain, tackles this task by training a neural network to establish a connection between the feature space of image classifiers and LLMs. Then, during inference, our approach generates a vast number of sentences to explain the features learned by the classifier for a given image. These sentences are then used to extract the most frequent words, providing a comprehensive understanding of the learned features and patterns within the classifier. Our method, for the first time, utilizes these frequent words corresponding to a visual representation to provide insights into the decision-making process of the independently trained classifier, enabling the detection of spurious correlations, biases, and a deeper comprehension of its behavior. To validate the effectiveness of our approach, we conduct experiments on diverse datasets, including ImageNet-9L and Waterbirds. The results demonstrate the potential of our method to enhance the interpretability and robustness of image classifiers.
Abstract:This paper presents a novel generative model for Computer Aided Design (CAD) that 1) represents high-level design concepts of a CAD model as a three-level hierarchical tree of neural codes, from global part arrangement down to local curve geometry; and 2) controls the generation or completion of CAD models by specifying the target design using a code tree. Concretely, a novel variant of a vector quantized VAE with "masked skip connection" extracts design variations as neural codebooks at three levels. Two-stage cascaded auto-regressive transformers learn to generate code trees from incomplete CAD models and then complete CAD models following the intended design. Extensive experiments demonstrate superior performance on conventional tasks such as random generation while enabling novel interaction capabilities on conditional generation tasks. The code is available at https://github.com/samxuxiang/hnc-cad.
Abstract:Through iterative, cross-disciplinary discussions, we define and propose next-steps for Human-centered Generative AI (HGAI) from a technical perspective. We contribute a roadmap that lays out future directions of Generative AI spanning three levels: Aligning with human values; Accommodating humans' expression of intents; and Augmenting humans' abilities in a collaborative workflow. This roadmap intends to draw interdisciplinary research teams to a comprehensive list of emergent ideas in HGAI, identifying their interested topics while maintaining a coherent big picture of the future work landscape.
Abstract:Assembly planning is the core of automating product assembly, maintenance, and recycling for modern industrial manufacturing. Despite its importance and long history of research, planning for mechanical assemblies when given the final assembled state remains a challenging problem. This is due to the complexity of dealing with arbitrary 3D shapes and the highly constrained motion required for real-world assemblies. In this work, we propose a novel method to efficiently plan physically plausible assembly motion and sequences for real-world assemblies. Our method leverages the assembly-by-disassembly principle and physics-based simulation to efficiently explore a reduced search space. To evaluate the generality of our method, we define a large-scale dataset consisting of thousands of physically valid industrial assemblies with a variety of assembly motions required. Our experiments on this new benchmark demonstrate we achieve a state-of-the-art success rate and the highest computational efficiency compared to other baseline algorithms. Our method also generalizes to rotational assemblies (e.g., screws and puzzles) and solves 80-part assemblies within several minutes.
Abstract:Reverse Engineering a CAD shape from other representations is an important geometric processing step for many downstream applications. In this work, we introduce a novel neural network architecture to solve this challenging task and approximate a smoothed signed distance function with an editable, constrained, prismatic CAD model. During training, our method reconstructs the input geometry in the voxel space by decomposing the shape into a series of 2D profile images and 1D envelope functions. These can then be recombined in a differentiable way allowing a geometric loss function to be defined. During inference, we obtain the CAD data by first searching a database of 2D constrained sketches to find curves which approximate the profile images, then extrude them and use Boolean operations to build the final CAD model. Our method approximates the target shape more closely than other methods and outputs highly editable constrained parametric sketches which are compatible with existing CAD software.
Abstract:User modeling is crucial to understanding user behavior and essential for improving user experience and personalized recommendations. When users interact with software, vast amounts of command sequences are generated through logging and analytics systems. These command sequences contain clues to the users' goals and intents. However, these data modalities are highly unstructured and unlabeled, making it difficult for standard predictive systems to learn from. We propose SimCURL, a simple yet effective contrastive self-supervised deep learning framework that learns user representation from unlabeled command sequences. Our method introduces a user-session network architecture, as well as session dropout as a novel way of data augmentation. We train and evaluate our method on a real-world command sequence dataset of more than half a billion commands. Our method shows significant improvement over existing methods when the learned representation is transferred to downstream tasks such as experience and expertise classification.
Abstract:We present SkexGen, a novel autoregressive generative model for computer-aided design (CAD) construction sequences containing sketch-and-extrude modeling operations. Our model utilizes distinct Transformer architectures to encode topological, geometric, and extrusion variations of construction sequences into disentangled codebooks. Autoregressive Transformer decoders generate CAD construction sequences sharing certain properties specified by the codebook vectors. Extensive experiments demonstrate that our disentangled codebook representation generates diverse and high-quality CAD models, enhances user control, and enables efficient exploration of the design space. The code is available at https://samxuxiang.github.io/skexgen.
Abstract:The Boundary representation (B-rep) format is the de-facto shape representation in computer-aided design (CAD) to model watertight solid objects. Recent approaches to generating CAD models have focused on learning sketch-and-extrude modeling sequences that are executed by a solid modeling kernel in postprocess to recover a B-rep. In this paper we present a new approach that enables learning from and synthesizing B-reps without the need for supervision through CAD modeling sequence data. Our method SolidGen, is an autoregressive neural network that models the B-rep directly by predicting the vertices, edges and faces using Transformer-based and pointer neural networks. Key to achieving this is our Indexed Boundary Representation that references B-rep vertices, edges and faces in a well-defined hierarchy to capture the geometric and topological relations suitable for use with machine learning. SolidGen can be easily conditioned on contexts e.g., class labels thanks to its probabilistic modeling of the B-rep distribution. We demonstrate qualitatively, quantitatively and through perceptual evaluation by human subjects that SolidGen can produce high quality, realistic looking CAD models.