MSME
Abstract:Point cloud frame interpolation is a challenging task that involves accurate scene flow estimation across frames and maintaining the geometry structure. Prevailing techniques often rely on pre-trained motion estimators or intensive testing-time optimization, resulting in compromised interpolation accuracy or prolonged inference. This work presents FastPCI that introduces Pyramid Convolution-Transformer architecture for point cloud frame interpolation. Our hybrid Convolution-Transformer improves the local and long-range feature learning, while the pyramid network offers multilevel features and reduces the computation. In addition, FastPCI proposes a unique Dual-Direction Motion-Structure block for more accurate scene flow estimation. Our design is motivated by two facts: (1) accurate scene flow preserves 3D structure, and (2) point cloud at the previous timestep should be reconstructable using reverse motion from future timestep. Extensive experiments show that FastPCI significantly outperforms the state-of-the-art PointINet and NeuralPCI with notable gains (e.g. 26.6% and 18.3% reduction in Chamfer Distance in KITTI), while being more than 10x and 600x faster, respectively. Code is available at https://github.com/genuszty/FastPCI
Abstract:This work explores sequential model editing in large language models (LLMs), a critical task that involves modifying internal knowledge within LLMs continuously through multi-round editing, each incorporating updates or corrections to adjust the model outputs without the need for costly retraining. Existing model editing methods, especially those that alter model parameters, typically focus on single-round editing and often face significant challenges in sequential model editing-most notably issues of model forgetting and failure. To address these challenges, we introduce a new model editing method, namely \textbf{N}euron-level \textbf{S}equential \textbf{E}diting (NSE), tailored for supporting sequential model editing. Specifically, we optimize the target layer's hidden states using the model's original weights to prevent model failure. Furthermore, we iteratively select neurons in multiple layers for editing based on their activation values to mitigate model forgetting. Our empirical experiments demonstrate that NSE significantly outperforms current modifying parameters model editing methods, marking a substantial advancement in the field of sequential model editing. Our code is released on \url{https://github.com/jianghoucheng/NSE}.
Abstract:Learned image compression (LIC) has achieved state-of-the-art rate-distortion performance, deemed promising for next-generation image compression techniques. However, pre-trained LIC models usually suffer from significant performance degradation when applied to out-of-training-domain images, implying their poor generalization capabilities. To tackle this problem, we propose a few-shot domain adaptation method for LIC by integrating plug-and-play adapters into pre-trained models. Drawing inspiration from the analogy between latent channels and frequency components, we examine domain gaps in LIC and observe that out-of-training-domain images disrupt pre-trained channel-wise decomposition. Consequently, we introduce a method for channel-wise re-allocation using convolution-based adapters and low-rank adapters, which are lightweight and compatible to mainstream LIC schemes. Extensive experiments across multiple domains and multiple representative LIC schemes demonstrate that our method significantly enhances pre-trained models, achieving comparable performance to H.266/VVC intra coding with merely 25 target-domain samples. Additionally, our method matches the performance of full-model finetune while transmitting fewer than $2\%$ of the parameters.
Abstract:Precision breast cancer (BC) risk assessment is crucial for developing individualized screening and prevention. Despite the promising potential of recent mammogram (MG) based deep learning models in predicting BC risk, they mostly overlook the 'time-to-future-event' ordering among patients and exhibit limited explorations into how they track history changes in breast tissue, thereby limiting their clinical application. In this work, we propose a novel method, named OA-BreaCR, to precisely model the ordinal relationship of the time to and between BC events while incorporating longitudinal breast tissue changes in a more explainable manner. We validate our method on public EMBED and inhouse datasets, comparing with existing BC risk prediction and time prediction methods. Our ordinal learning method OA-BreaCR outperforms existing methods in both BC risk and time-to-future-event prediction tasks. Additionally, ordinal heatmap visualizations show the model's attention over time. Our findings underscore the importance of interpretable and precise risk assessment for enhancing BC screening and prevention efforts. The code will be accessible to the public.
Abstract:Molecular property prediction is a crucial foundation for drug discovery. In recent years, pre-trained deep learning models have been widely applied to this task. Some approaches that incorporate prior biological domain knowledge into the pre-training framework have achieved impressive results. However, these methods heavily rely on biochemical experts, and retrieving and summarizing vast amounts of domain knowledge literature is both time-consuming and expensive. Large Language Models (LLMs) have demonstrated remarkable performance in understanding and efficiently providing general knowledge. Nevertheless, they occasionally exhibit hallucinations and lack precision in generating domain-specific knowledge. Conversely, Domain-specific Small Models (DSMs) possess rich domain knowledge and can accurately calculate molecular domain-related metrics. However, due to their limited model size and singular functionality, they lack the breadth of knowledge necessary for comprehensive representation learning. To leverage the advantages of both approaches in molecular property prediction, we propose a novel Molecular Graph representation learning framework that integrates Large language models and Domain-specific small models (MolGraph-LarDo). Technically, we design a two-stage prompt strategy where DSMs are introduced to calibrate the knowledge provided by LLMs, enhancing the accuracy of domain-specific information and thus enabling LLMs to generate more precise textual descriptions for molecular samples. Subsequently, we employ a multi-modal alignment method to coordinate various modalities, including molecular graphs and their corresponding descriptive texts, to guide the pre-training of molecular representations. Extensive experiments demonstrate the effectiveness of the proposed method.
Abstract:This paper presents a learning based planner for computing optimized 3D printing toolpaths on prescribed graphs, the challenges of which include the varying graph structures on different models and the large scale of nodes & edges on a graph. We adopt an on-the-fly strategy to tackle these challenges, formulating the planner as a Deep Q-Network (DQN) based optimizer to decide the next `best' node to visit. We construct the state spaces by the Local Search Graph (LSG) centered at different nodes on a graph, which is encoded by a carefully designed algorithm so that LSGs in similar configurations can be identified to re-use the earlier learned DQN priors for accelerating the computation of toolpath planning. Our method can cover different 3D printing applications by defining their corresponding reward functions. Toolpath planning problems in wire-frame printing, continuous fiber printing, and metallic printing are selected to demonstrate its generality. The performance of our planner has been verified by testing the resultant toolpaths in physical experiments. By using our planner, wire-frame models with up to 4.2k struts can be successfully printed, up to 93.3% of sharp turns on continuous fiber toolpaths can be avoided, and the thermal distortion in metallic printing can be reduced by 24.9%.
Abstract:We study the problem of finding the index of the minimum value of a vector from noisy observations. This problem is relevant in population/policy comparison, discrete maximum likelihood, and model selection. We develop a test statistic that is asymptotically normal, even in high-dimensional settings and with potentially many ties in the population mean vector, by integrating concepts and tools from cross-validation and differential privacy. The key technical ingredient is a central limit theorem for globally dependent data. We also propose practical ways to select the tuning parameter that adapts to the signal landscape.
Abstract:Text-to-image models are showcasing the impressive ability to create high-quality and diverse generative images. Nevertheless, the transition from freehand sketches to complex scene images remains challenging using diffusion models. In this study, we propose a novel sketch-guided scene image generation framework, decomposing the task of scene image scene generation from sketch inputs into object-level cross-domain generation and scene-level image construction. We employ pre-trained diffusion models to convert each single object drawing into an image of the object, inferring additional details while maintaining the sparse sketch structure. In order to maintain the conceptual fidelity of the foreground during scene generation, we invert the visual features of object images into identity embeddings for scene generation. In scene-level image construction, we generate the latent representation of the scene image using the separated background prompts, and then blend the generated foreground objects according to the layout of the sketch input. To ensure the foreground objects' details remain unchanged while naturally composing the scene image, we infer the scene image on the blended latent representation using a global prompt that includes the trained identity tokens. Through qualitative and quantitative experiments, we demonstrate the ability of the proposed approach to generate scene images from hand-drawn sketches surpasses the state-of-the-art approaches.
Abstract:Adversarial learning helps generative models translate MRI from source to target sequence when lacking paired samples. However, implementing MRI synthesis with adversarial learning in clinical settings is challenging due to training instability and mode collapse. To address this issue, we leverage intermediate sequences to estimate the common latent space among multi-sequence MRI, enabling the reconstruction of distinct sequences from the common latent space. We propose a generative model that compresses discrete representations of each sequence to estimate the Gaussian distribution of vector-quantized common (VQC) latent space between multiple sequences. Moreover, we improve the latent space consistency with contrastive learning and increase model stability by domain augmentation. Experiments using BraTS2021 dataset show that our non-adversarial model outperforms other GAN-based methods, and VQC latent space aids our model to achieve (1) anti-interference ability, which can eliminate the effects of noise, bias fields, and artifacts, and (2) solid semantic representation ability, with the potential of one-shot segmentation. Our code is publicly available.
Abstract:The growing presence of artificially intelligent agents in everyday decision-making, from LLM assistants to autonomous vehicles, hints at a future in which conflicts may arise from each agent optimizing individual interests. In general-sum games these conflicts are apparent, where naive Reinforcement Learning agents get stuck in Pareto-suboptimal Nash equilibria. Consequently, opponent shaping has been introduced as a method with success at finding socially beneficial equilibria in social dilemmas. In this work, we introduce Advantage Alignment, a family of algorithms derived from first principles that perform opponent shaping efficiently and intuitively. This is achieved by aligning the advantages of conflicting agents in a given game by increasing the probability of mutually-benefiting actions. We prove that existing opponent shaping methods, including LOLA and LOQA, implicitly perform Advantage Alignment. Compared to these works, Advantage Alignment mathematically simplifies the formulation of opponent shaping and seamlessly works for continuous action domains. We also demonstrate the effectiveness of our algorithm in a wide range of social dilemmas, achieving state of the art results in each case, including a social dilemma version of the Negotiation Game.