IEEE
Abstract:Conformal prediction is an uncertainty quantification method that constructs a prediction set for a previously unseen datum, ensuring the true label is included with a predetermined coverage probability. Adaptive conformal prediction has been developed to address data distribution shifts in dynamic environments. However, the efficiency of prediction sets varies depending on the learning model used. Employing a single fixed model may not consistently offer the best performance in dynamic environments with unknown data distribution shifts. To address this issue, we introduce a novel adaptive conformal prediction framework, where the model used for creating prediction sets is selected on the fly from multiple candidate models. The proposed algorithm is proven to achieve strongly adaptive regret over all intervals while maintaining valid coverage. Experiments on real and synthetic datasets corroborate that the proposed approach consistently yields more efficient prediction sets while maintaining valid coverage, outperforming alternative methods.
Abstract:Federated learning is renowned for its efficacy in distributed model training, ensuring that users, called clients, retain data privacy by not disclosing their data to the central server that orchestrates collaborations. Most previous work on federated learning assumes that clients possess static batches of training data. However, clients may also need to make real-time predictions on streaming data in non-stationary environments. In such dynamic environments, employing pre-trained models may be inefficient, as they struggle to adapt to the constantly evolving data streams. To address this challenge, clients can fine-tune models online, leveraging their observed data to enhance performance. Despite the potential benefits of client participation in federated online model fine-tuning, existing analyses have not conclusively demonstrated its superiority over local model fine-tuning. To bridge this gap, the present paper develops a novel personalized federated learning algorithm, wherein each client constructs a personalized model by combining a locally fine-tuned model with multiple federated models learned by the server over time. Theoretical analysis and experiments on real datasets corroborate the effectiveness of this approach for real-time predictions and federated model fine-tuning.
Abstract:Vision Transformer (ViT) has achieved excellent performance and demonstrated its promising potential in various computer vision tasks. The wide deployment of ViT in real-world tasks requires a thorough understanding of the societal impact of the model. However, most ViT-based works do not take fairness into account and it is unclear whether directly applying CNN-oriented debiased algorithm to ViT is feasible. Moreover, previous works typically sacrifice accuracy for fairness. Therefore, we aim to develop an algorithm that improves accuracy without sacrificing fairness. In this paper, we propose FairViT, a novel accurate and fair ViT framework. To this end, we introduce a novel distance loss and deploy adaptive fairness-aware masks on attention layers updating with model parameters. Experimental results show \sys can achieve accuracy better than other alternatives, even with competitive computational efficiency. Furthermore, \sys achieves appreciable fairness results.
Abstract:Training graph neural networks (GNNs) on large-scale graphs can be challenging due to the high computational expense caused by the massive number of nodes and high-dimensional nodal features. Existing graph condensation studies tackle this problem only by reducing the number of nodes in the graph. However, the resulting condensed graph data can still be cumbersome. Specifically, although the nodes of the Citeseer dataset are reduced to 0.9% (30 nodes) in training, the number of features is 3,703, severely exceeding the training sample magnitude. Faced with this challenge, we study the problem of joint condensation for both features and nodes in large-scale graphs. This task is challenging mainly due to 1) the intertwined nature of the node features and the graph structure calls for the feature condensation solver to be structure-aware; and 2) the difficulty of keeping useful information in the condensed graph. To address these challenges, we propose a novel framework TinyGraph, to condense features and nodes simultaneously in graphs. Specifically, we cast the problem as matching the gradients of GNN weights trained on the condensed graph and the gradients obtained from training over the original graph, where the feature condensation is achieved by a trainable function. The condensed graph obtained by minimizing the matching loss along the training trajectory can henceforth retain critical information in the original graph. Extensive experiments were carried out to demonstrate the effectiveness of the proposed TinyGraph. For example, a GNN trained with TinyGraph retains 98.5% and 97.5% of the original test accuracy on the Cora and Citeseer datasets, respectively, while significantly reducing the number of nodes by 97.4% and 98.2%, and the number of features by 90.0% on both datasets.
Abstract:Machine learning over graphs has recently attracted growing attention due to its ability to analyze and learn complex relations within critical interconnected systems. However, the disparate impact that is amplified by the use of biased graph structures in these algorithms has raised significant concerns for the deployment of them in real-world decision systems. In addition, while synthetic graph generation has become pivotal for privacy and scalability considerations, the impact of generative learning algorithms on the structural bias has not yet been investigated. Motivated by this, this work focuses on the analysis and mitigation of structural bias for both real and synthetic graphs. Specifically, we first theoretically analyze the sources of structural bias that result in disparity for the predictions of dyadic relations. To alleviate the identified bias factors, we design a novel fairness regularizer that offers a versatile use. Faced with the bias amplification in graph generation models that is brought to light in this work, we further propose a fair graph generation framework, FairWire, by leveraging our fair regularizer design in a generative model. Experimental results on real-world networks validate that the proposed tools herein deliver effective structural bias mitigation for both real and synthetic graphs.
Abstract:Online model selection involves selecting a model from a set of candidate models 'on the fly' to perform prediction on a stream of data. The choice of candidate models henceforth has a crucial impact on the performance. Although employing a larger set of candidate models naturally leads to more flexibility in model selection, this may be infeasible in cases where prediction tasks are performed on edge devices with limited memory. Faced with this challenge, the present paper proposes an online federated model selection framework where a group of learners (clients) interacts with a server with sufficient memory such that the server stores all candidate models. However, each client only chooses to store a subset of models that can be fit into its memory and performs its own prediction task using one of the stored models. Furthermore, employing the proposed algorithm, clients and the server collaborate to fine-tune models to adapt them to a non-stationary environment. Theoretical analysis proves that the proposed algorithm enjoys sub-linear regret with respect to the best model in hindsight. Experiments on real datasets demonstrate the effectiveness of the proposed algorithm.
Abstract:Machine learning (ML) has demonstrated remarkable capabilities across many real-world systems, from predictive modeling to intelligent automation. However, the widespread integration of machine learning also makes it necessary to ensure machine learning-driven decision-making systems do not violate ethical principles and values of society in which they operate. As ML-driven decisions proliferate, particularly in cases involving sensitive attributes such as gender, race, and age, to name a few, the need for equity and impartiality has emerged as a fundamental concern. In situations demanding real-time decision-making, fairness objectives become more nuanced and complex: instantaneous fairness to ensure equity in every time slot, and long-term fairness to ensure fairness over a period of time. There is a growing awareness that real-world systems that operate over long periods and require fairness over different timelines. However, existing approaches mainly address dynamic costs with time-invariant fairness constraints, often disregarding the challenges posed by time-varying fairness constraints. To bridge this gap, this work introduces a framework for ensuring long-term fairness within dynamic decision-making systems characterized by time-varying fairness constraints. We formulate the decision problem with fairness constraints over a period as a constrained online optimization problem. A novel online algorithm, named LoTFair, is presented that solves the problem 'on the fly'. We prove that LoTFair can make overall fairness violations negligible while maintaining the performance over the long run.
Abstract:Multi-kernel learning (MKL) exhibits well-documented performance in online non-linear function approximation. Federated learning enables a group of learners (called clients) to train an MKL model on the data distributed among clients to perform online non-linear function approximation. There are some challenges in online federated MKL that need to be addressed: i) Communication efficiency especially when a large number of kernels are considered ii) Heterogeneous data distribution among clients. The present paper develops an algorithmic framework to enable clients to communicate with the server to send their updates with affordable communication cost while clients employ a large dictionary of kernels. Utilizing random feature (RF) approximation, the present paper proposes scalable online federated MKL algorithm. We prove that using the proposed online federated MKL algorithm, each client enjoys sub-linear regret with respect to the RF approximation of its best kernel in hindsight, which indicates that the proposed algorithm can effectively deal with heterogeneity of the data distributed among clients. Experimental results on real datasets showcase the advantages of the proposed algorithm compared with other online federated kernel learning ones.
Abstract:Graphs are mathematical tools that can be used to represent complex real-world interconnected systems, such as financial markets and social networks. Hence, machine learning (ML) over graphs has attracted significant attention recently. However, it has been demonstrated that ML over graphs amplifies the already existing bias towards certain under-represented groups in various decision-making problems due to the information aggregation over biased graph structures. Faced with this challenge, here we take a fresh look at the problem of bias mitigation in graph-based learning by borrowing insights from graph signal processing. Our idea is to introduce predesigned graph filters within an ML pipeline to reduce a novel unsupervised bias measure, namely the correlation between sensitive attributes and the underlying graph connectivity. We show that the optimal design of said filters can be cast as a convex problem in the graph spectral domain. We also formulate a linear programming (LP) problem informed by a theoretical bias analysis, which attains a closed-form solution and leads to a more efficient fairness-aware graph filter. Finally, for a design whose degrees of freedom are independent of the input graph size, we minimize the bias metric over the family of polynomial graph convolutional filters. Our optimal filter designs offer complementary strengths to explore favorable fairness-utility-complexity tradeoffs. For performance evaluation, we conduct extensive and reproducible node classification experiments over real-world networks. Our results show that the proposed framework leads to better fairness measures together with similar utility compared to state-of-the-art fairness-aware baselines.
Abstract:We introduce the problem of model-extraction attacks in cyber-physical systems in which an attacker attempts to estimate (or extract) the feedback controller of the system. Extracting (or estimating) the controller provides an unmatched edge to attackers since it allows them to predict the future control actions of the system and plan their attack accordingly. Hence, it is important to understand the ability of the attackers to perform such an attack. In this paper, we focus on the setting when a Deep Neural Network (DNN) controller is trained using Reinforcement Learning (RL) algorithms and is used to control a stochastic system. We play the role of the attacker that aims to estimate such an unknown DNN controller, and we propose a two-phase algorithm. In the first phase, also called the offline phase, the attacker uses side-channel information about the RL-reward function and the system dynamics to identify a set of candidate estimates of the unknown DNN. In the second phase, also called the online phase, the attacker observes the behavior of the unknown DNN and uses these observations to shortlist the set of final policy estimates. We provide theoretical analysis of the error between the unknown DNN and the estimated one. We also provide numerical results showing the effectiveness of the proposed algorithm.