Abstract:Graph federated learning is of essential importance for training over large graph datasets while protecting data privacy, where each client stores a subset of local graph data, while the server collects the local gradients and broadcasts only the aggregated gradients. Recent studies reveal that a malicious attacker can steal private image data from gradient exchanging of neural networks during federated learning. However, none of the existing works have studied the vulnerability of graph data and graph neural networks under such attack. To answer this question, the present paper studies the problem of whether private data can be recovered from leaked gradients in both node classification and graph classification tasks and { proposes a novel attack named Graph Leakage from Gradients (GLG)}. Two widely-used GNN frameworks are analyzed, namely GCN and GraphSAGE. The effects of different model settings on recovery are extensively discussed. Through theoretical analysis and empirical validation, it is shown that parts of the graph data can be leaked from the gradients.
Abstract:The advancement of Large Language Models (LLMs) has led to their widespread use across a broad spectrum of tasks including decision making. Prior studies have compared the decision making abilities of LLMs with those of humans from a psychological perspective. However, these studies have not always properly accounted for the sensitivity of LLMs' behavior to hyperparameters and variations in the prompt. In this study, we examine LLMs' performance on the Horizon decision making task studied by Binz and Schulz (2023) analyzing how LLMs respond to variations in prompts and hyperparameters. By experimenting on three OpenAI language models possessing different capabilities, we observe that the decision making abilities fluctuate based on the input prompts and temperature settings. Contrary to previous findings language models display a human-like exploration exploitation tradeoff after simple adjustments to the prompt.