Abstract:Large-scale latent variable models require expressive continuous distributions that support efficient sampling and low-variance differentiation, achievable through the reparameterization trick. The Kumaraswamy (KS) distribution is both expressive and supports the reparameterization trick with a simple closed-form inverse CDF. Yet, its adoption remains limited. We identify and resolve numerical instabilities in the inverse CDF and log-pdf, exposing issues in libraries like PyTorch and TensorFlow. We then introduce simple and scalable latent variable models based on the KS, improving exploration-exploitation trade-offs in contextual multi-armed bandits and enhancing uncertainty quantification for link prediction with graph neural networks. Our results support the stabilized KS distribution as a core component in scalable variational models for bounded latent variables.
Abstract:We study a blind deconvolution problem on graphs, which arises in the context of localizing a few sources that diffuse over networks. While the observations are bilinear functions of the unknown graph filter coefficients and sparse input signals, a mild requirement on invertibility of the diffusion filter enables an efficient convex relaxation leading to a linear programming formulation that can be tackled with off-the-shelf solvers. Under the Bernoulli-Gaussian model for the inputs, we derive sufficient exact recovery conditions in the noise-free setting. A stable recovery result is then established, ensuring the estimation error remains manageable even when the observations are corrupted by a small amount of noise. Numerical tests with synthetic and real-world network data illustrate the merits of the proposed algorithm, its robustness to noise as well as the benefits of leveraging multiple signals to aid the (blind) localization of sources of diffusion. At a fundamental level, the results presented here broaden the scope of classical blind deconvolution of (spatio-)temporal signals to irregular graph domains.
Abstract:We address the problem of learning the topology of directed acyclic graphs (DAGs) from nodal observations, which adhere to a linear structural equation model. Recent advances framed the combinatorial DAG structure learning task as a continuous optimization problem, yet existing methods must contend with the complexities of non-convex optimization. To overcome this limitation, we assume that the latent DAG contains only non-negative edge weights. Leveraging this additional structure, we argue that cycles can be effectively characterized (and prevented) using a convex acyclicity function based on the log-determinant of the adjacency matrix. This convexity allows us to relax the task of learning the non-negative weighted DAG as an abstract convex optimization problem. We propose a DAG recovery algorithm based on the method of multipliers, that is guaranteed to return a global minimizer. Furthermore, we prove that in the infinite sample size regime, the convexity of our approach ensures the recovery of the true DAG structure. We empirically validate the performance of our algorithm in several reproducible synthetic-data test cases, showing that it outperforms state-of-the-art alternatives.
Abstract:Graphs serve as generic tools to encode the underlying relational structure of data. Often this graph is not given, and so the task of inferring it from nodal observations becomes important. Traditional approaches formulate a convex inverse problem with a smoothness promoting objective and rely on iterative methods to obtain a solution. In supervised settings where graph labels are available, one can unroll and truncate these iterations into a deep network that is trained end-to-end. Such a network is parameter efficient and inherits inductive bias from the optimization formulation, an appealing aspect for data constrained settings in, e.g., medicine, finance, and the natural sciences. But typically such settings care equally about uncertainty over edge predictions, not just point estimates. Here we introduce novel iterations with independently interpretable parameters, i.e., parameters whose values - independent of other parameters' settings - proportionally influence characteristics of the estimated graph, such as edge sparsity. After unrolling these iterations, prior knowledge over such graph characteristics shape prior distributions over these independently interpretable network parameters to yield a Bayesian neural network (BNN) capable of graph structure learning (GSL) from smooth signal observations. Fast execution and parameter efficiency allow for high-fidelity posterior approximation via Markov Chain Monte Carlo (MCMC) and thus uncertainty quantification on edge predictions. Synthetic and real data experiments corroborate this model's ability to provide well-calibrated estimates of uncertainty, in test cases that include unveiling economic sector modular structure from S$\&$P$500$ data and recovering pairwise digit similarities from MNIST images. Overall, this framework enables GSL in modest-scale applications where uncertainty on the data structure is paramount.
Abstract:We develop a novel convolutional architecture tailored for learning from data defined over directed acyclic graphs (DAGs). DAGs can be used to model causal relationships among variables, but their nilpotent adjacency matrices pose unique challenges towards developing DAG signal processing and machine learning tools. To address this limitation, we harness recent advances offering alternative definitions of causal shifts and convolutions for signals on DAGs. We develop a novel convolutional graph neural network that integrates learnable DAG filters to account for the partial ordering induced by the graph topology, thus providing valuable inductive bias to learn effective representations of DAG-supported data. We discuss the salient advantages and potential limitations of the proposed DAG convolutional network (DCN) and evaluate its performance on two learning tasks using synthetic data: network diffusion estimation and source identification. DCN compares favorably relative to several baselines, showcasing its promising potential.
Abstract:Brain age is the estimate of biological age derived from neuroimaging datasets using machine learning algorithms. Increasing brain age with respect to chronological age can reflect increased vulnerability to neurodegeneration and cognitive decline. In this paper, we study NeuroVNN, based on coVariance neural networks, as a paradigm for foundation model for the brain age prediction application. NeuroVNN is pre-trained as a regression model on healthy population to predict chronological age using cortical thickness features and fine-tuned to estimate brain age in different neurological contexts. Importantly, NeuroVNN adds anatomical interpretability to brain age and has a `scale-free' characteristic that allows its transference to datasets curated according to any arbitrary brain atlas. Our results demonstrate that NeuroVNN can extract biologically plausible brain age estimates in different populations, as well as transfer successfully to datasets of dimensionalities distinct from that for the dataset used to train NeuroVNN.
Abstract:Graphs are mathematical tools that can be used to represent complex real-world interconnected systems, such as financial markets and social networks. Hence, machine learning (ML) over graphs has attracted significant attention recently. However, it has been demonstrated that ML over graphs amplifies the already existing bias towards certain under-represented groups in various decision-making problems due to the information aggregation over biased graph structures. Faced with this challenge, here we take a fresh look at the problem of bias mitigation in graph-based learning by borrowing insights from graph signal processing. Our idea is to introduce predesigned graph filters within an ML pipeline to reduce a novel unsupervised bias measure, namely the correlation between sensitive attributes and the underlying graph connectivity. We show that the optimal design of said filters can be cast as a convex problem in the graph spectral domain. We also formulate a linear programming (LP) problem informed by a theoretical bias analysis, which attains a closed-form solution and leads to a more efficient fairness-aware graph filter. Finally, for a design whose degrees of freedom are independent of the input graph size, we minimize the bias metric over the family of polynomial graph convolutional filters. Our optimal filter designs offer complementary strengths to explore favorable fairness-utility-complexity tradeoffs. For performance evaluation, we conduct extensive and reproducible node classification experiments over real-world networks. Our results show that the proposed framework leads to better fairness measures together with similar utility compared to state-of-the-art fairness-aware baselines.
Abstract:We deal with the combinatorial problem of learning directed acyclic graph (DAG) structure from observational data adhering to a linear structural equation model (SEM). Leveraging advances in differentiable, nonconvex characterizations of acyclicity, recent efforts have advocated a continuous constrained optimization paradigm to efficiently explore the space of DAGs. Most existing methods employ lasso-type score functions to guide this search, which (i) require expensive penalty parameter retuning when the $\textit{unknown}$ SEM noise variances change across problem instances; and (ii) implicitly rely on limiting homoscedasticity assumptions. In this work, we propose a new convex score function for sparsity-aware learning of linear DAGs, which incorporates concomitant estimation of scale and thus effectively decouples the sparsity parameter from the exogenous noise levels. Regularization via a smooth, nonconvex acyclicity penalty term yields CoLiDE ($\textbf{Co}$ncomitant $\textbf{Li}$near $\textbf{D}$AG $\textbf{E}$stimation), a regression-based criterion amenable to efficient gradient computation and closed-form estimation of noise variances in heteroscedastic scenarios. Our algorithm outperforms state-of-the-art methods without incurring added complexity, especially when the DAGs are larger and the noise level profile is heterogeneous. We also find CoLiDE exhibits enhanced stability manifested via reduced standard deviations in several domain-specific metrics, underscoring the robustness of our novel linear DAG estimator.
Abstract:The Random Dot Product Graph (RDPG) is a generative model for relational data, where nodes are represented via latent vectors in low-dimensional Euclidean space. RDPGs crucially postulate that edge formation probabilities are given by the dot product of the corresponding latent positions. Accordingly, the embedding task of estimating these vectors from an observed graph is typically posed as a low-rank matrix factorization problem. The workhorse Adjacency Spectral Embedding (ASE) enjoys solid statistical properties, but it is formally solving a surrogate problem and can be computationally intensive. In this paper, we bring to bear recent advances in non-convex optimization and demonstrate their impact to RDPG inference. We advocate first-order gradient descent methods to better solve the embedding problem, and to organically accommodate broader network embedding applications of practical relevance. Notably, we argue that RDPG embeddings of directed graphs loose interpretability unless the factor matrices are constrained to have orthogonal columns. We thus develop a novel feasible optimization method in the resulting manifold. The effectiveness of the graph representation learning framework is demonstrated on reproducible experiments with both synthetic and real network data. Our open-source algorithm implementations are scalable, and unlike the ASE they are robust to missing edge data and can track slowly-varying latent positions from streaming graphs.
Abstract:In computational neuroscience, there has been an increased interest in developing machine learning algorithms that leverage brain imaging data to provide estimates of "brain age" for an individual. Importantly, the discordance between brain age and chronological age (referred to as "brain age gap") can capture accelerated aging due to adverse health conditions and therefore, can reflect increased vulnerability towards neurological disease or cognitive impairments. However, widespread adoption of brain age for clinical decision support has been hindered due to lack of transparency and methodological justifications in most existing brain age prediction algorithms. In this paper, we leverage coVariance neural networks (VNN) to propose an anatomically interpretable framework for brain age prediction using cortical thickness features. Specifically, our brain age prediction framework extends beyond the coarse metric of brain age gap in Alzheimer's disease (AD) and we make two important observations: (i) VNNs can assign anatomical interpretability to elevated brain age gap in AD by identifying contributing brain regions, (ii) the interpretability offered by VNNs is contingent on their ability to exploit specific eigenvectors of the anatomical covariance matrix. Together, these observations facilitate an explainable perspective to the task of brain age prediction.