Abstract:While deep generative models have significantly advanced representation learning, they may inherit or amplify biases and fairness issues by encoding sensitive attributes alongside predictive features. Enforcing strict independence in disentanglement is often unrealistic when target and sensitive factors are naturally correlated. To address this challenge, we propose CAD-VAE (Correlation-Aware Disentangled VAE), which introduces a correlated latent code to capture the shared information between target and sensitive attributes. Given this correlated latent, our method effectively separates overlapping factors without extra domain knowledge by directly minimizing the conditional mutual information between target and sensitive codes. A relevance-driven optimization strategy refines the correlated code by efficiently capturing essential correlated features and eliminating redundancy. Extensive experiments on benchmark datasets demonstrate that CAD-VAE produces fairer representations, realistic counterfactuals, and improved fairness-aware image editing.
Abstract:Dense object detection is widely used in automatic driving, video surveillance, and other fields. This paper focuses on the challenging task of dense object detection. Currently, detection methods based on greedy algorithms, such as non-maximum suppression (NMS), often produce many repetitive predictions or missed detections in dense scenarios, which is a common problem faced by NMS-based algorithms. Through the end-to-end DETR (DEtection TRansformer), as a type of detector that can incorporate the post-processing de-duplication capability of NMS, etc., into the network, we found that homogeneous queries in the query-based detector lead to a reduction in the de-duplication capability of the network and the learning efficiency of the encoder, resulting in duplicate prediction and missed detection problems. To solve this problem, we propose learnable differentiated encoding to de-homogenize the queries, and at the same time, queries can communicate with each other via differentiated encoding information, replacing the previous self-attention among the queries. In addition, we used joint loss on the output of the encoder that considered both location and confidence prediction to give a higher-quality initialization for queries. Without cumbersome decoder stacking and guaranteeing accuracy, our proposed end-to-end detection framework was more concise and reduced the number of parameters by about 8% compared to deformable DETR. Our method achieved excellent results on the challenging CrowdHuman dataset with 93.6% average precision (AP), 39.2% MR-2, and 84.3% JI. The performance overperformed previous SOTA methods, such as Iter-E2EDet (Progressive End-to-End Object Detection) and MIP (One proposal, Multiple predictions). In addition, our method is more robust in various scenarios with different densities.