Abstract:Infrared and visible image fusion (IVIF) is a crucial technique for enhancing visual performance by integrating unique information from different modalities into one fused image. Exiting methods pay more attention to conducting fusion with undisturbed data, while overlooking the impact of deliberate interference on the effectiveness of fusion results. To investigate the robustness of fusion models, in this paper, we propose a novel adversarial attack resilient network, called $\textrm{A}^{\textrm{2}}$RNet. Specifically, we develop an adversarial paradigm with an anti-attack loss function to implement adversarial attacks and training. It is constructed based on the intrinsic nature of IVIF and provide a robust foundation for future research advancements. We adopt a Unet as the pipeline with a transformer-based defensive refinement module (DRM) under this paradigm, which guarantees fused image quality in a robust coarse-to-fine manner. Compared to previous works, our method mitigates the adverse effects of adversarial perturbations, consistently maintaining high-fidelity fusion results. Furthermore, the performance of downstream tasks can also be well maintained under adversarial attacks. Code is available at https://github.com/lok-18/A2RNet.
Abstract:Large vision-language models (LVLMs) have demonstrated exceptional performance on complex multimodal tasks. However, they continue to suffer from significant hallucination issues, including object, attribute, and relational hallucinations. To accurately detect these hallucinations, we investigated the variations in cross-modal attention patterns between hallucination and non-hallucination states. Leveraging these distinctions, we developed a lightweight detector capable of identifying hallucinations. Our proposed method, Detecting Hallucinations by Cross-modal Attention Patterns (DHCP), is straightforward and does not require additional LVLM training or extra LVLM inference steps. Experimental results show that DHCP achieves remarkable performance in hallucination detection. By offering novel insights into the identification and analysis of hallucinations in LVLMs, DHCP contributes to advancing the reliability and trustworthiness of these models.
Abstract:In this paper, we utilize information-theoretic metrics like matrix entropy and mutual information to analyze supervised learning. We explore the information content of data representations and classification head weights and their information interplay during supervised training. Experiments show that matrix entropy cannot solely describe the interaction of the information content of data representation and classification head weights but it can effectively reflect the similarity and clustering behavior of the data. Inspired by this, we propose a cross-modal alignment loss to improve the alignment between the representations of the same class from different modalities. Moreover, in order to assess the interaction of the information content of data representation and classification head weights more accurately, we utilize new metrics like matrix mutual information ratio (MIR) and matrix information entropy difference ratio (HDR). Through theory and experiment, we show that HDR and MIR can not only effectively describe the information interplay of supervised training but also improve the performance of supervised and semi-supervised learning.
Abstract:Large Vision-Language Models (LVLMs) have demonstrated their powerful multimodal capabilities. However, they also face serious safety problems, as adversaries can induce robustness issues in LVLMs through the use of well-designed adversarial examples. Therefore, LVLMs are in urgent need of detection tools for adversarial examples to prevent incorrect responses. In this work, we first discover that LVLMs exhibit regular attention patterns for clean images when presented with probe questions. We propose an unconventional method named PIP, which utilizes the attention patterns of one randomly selected irrelevant probe question (e.g., "Is there a clock?") to distinguish adversarial examples from clean examples. Regardless of the image to be tested and its corresponding question, PIP only needs to perform one additional inference of the image to be tested and the probe question, and then achieves successful detection of adversarial examples. Even under black-box attacks and open dataset scenarios, our PIP, coupled with a simple SVM, still achieves more than 98% recall and a precision of over 90%. Our PIP is the first attempt to detect adversarial attacks on LVLMs via simple irrelevant probe questions, shedding light on deeper understanding and introspection within LVLMs. The code is available at https://github.com/btzyd/pip.
Abstract:Cities, as the most fundamental environment of human life, encompass diverse physical elements such as buildings, roads and vegetation with complex interconnection. Crafting realistic, interactive 3D urban environments plays a crucial role in constructing AI agents capable of perceiving, decision-making, and acting like humans in real-world environments. However, creating high-fidelity 3D urban environments usually entails extensive manual labor from designers, involving intricate detailing and accurate representation of complex urban features. Therefore, how to accomplish this in an automatical way remains a longstanding challenge. Toward this problem, we propose UrbanWorld, the first generative urban world model that can automatically create a customized, realistic and interactive 3D urban world with flexible control conditions. UrbanWorld incorporates four key stages in the automatical crafting pipeline: 3D layout generation from openly accessible OSM data, urban scene planning and designing with a powerful urban multimodal large language model (Urban MLLM), controllable urban asset rendering with advanced 3D diffusion techniques, and finally the MLLM-assisted scene refinement. The crafted high-fidelity 3D urban environments enable realistic feedback and interactions for general AI and machine perceptual systems in simulations. We are working on contributing UrbanWorld as an open-source and versatile platform for evaluating and improving AI abilities in perception, decision-making, and interaction in realistic urban environments.
Abstract:Customized generative text-to-image models have the ability to produce images that closely resemble a given subject. However, in the context of generating advertising images for e-commerce scenarios, it is crucial that the generated subject's identity aligns perfectly with the product being advertised. In order to address the need for strictly-ID preserved advertising image generation, we have developed a Control-Net based customized image generation pipeline and have taken earring model advertising as an example. Our approach facilitates a seamless interaction between the earrings and the model's face, while ensuring that the identity of the earrings remains intact. Furthermore, to achieve a diverse and controllable display, we have proposed a multi-branch cross-attention architecture, which allows for control over the scale, pose, and appearance of the model, going beyond the limitations of text prompts. Our method manages to achieve fine-grained control of the generated model's face, resulting in controllable and captivating advertising effects.
Abstract:Large-scale text-to-image diffusion models have achieved great success in synthesizing high-quality and diverse images given target text prompts. Despite the revolutionary image generation ability, current state-of-the-art models still struggle to deal with multi-concept generation accurately in many cases. This phenomenon is known as ``concept bleeding" and displays as the unexpected overlapping or merging of various concepts. This paper presents a general approach for text-to-image diffusion models to address the mutual interference between different subjects and their attachments in complex scenes, pursuing better text-image consistency. The core idea is to isolate the synthesizing processes of different concepts. We propose to bind each attachment to corresponding subjects separately with split text prompts. Besides, we introduce a revision method to fix the concept bleeding problem in multi-subject synthesis. We first depend on pre-trained object detection and segmentation models to obtain the layouts of subjects. Then we isolate and resynthesize each subject individually with corresponding text prompts to avoid mutual interference. Overall, we achieve a training-free strategy, named Isolated Diffusion, to optimize multi-concept text-to-image synthesis. It is compatible with the latest Stable Diffusion XL (SDXL) and prior Stable Diffusion (SD) models. We compare our approach with alternative methods using a variety of multi-concept text prompts and demonstrate its effectiveness with clear advantages in text-image consistency and user study.
Abstract:In the dynamic realms of machine learning and deep learning, the robustness and reliability of models are paramount, especially in critical real-world applications. A fundamental challenge in this sphere is managing Out-of-Distribution (OOD) samples, significantly increasing the risks of model misclassification and uncertainty. Our work addresses this challenge by enhancing the detection and management of OOD samples in neural networks. We introduce OOD-R (Out-of-Distribution-Rectified), a meticulously curated collection of open-source datasets with enhanced noise reduction properties. In-Distribution (ID) noise in existing OOD datasets can lead to inaccurate evaluation of detection algorithms. Recognizing this, OOD-R incorporates noise filtering technologies to refine the datasets, ensuring a more accurate and reliable evaluation of OOD detection algorithms. This approach not only improves the overall quality of data but also aids in better distinguishing between OOD and ID samples, resulting in up to a 2.5\% improvement in model accuracy and a minimum 3.2\% reduction in false positives. Furthermore, we present ActFun, an innovative method that fine-tunes the model's response to diverse inputs, thereby improving the stability of feature extraction and minimizing specificity issues. ActFun addresses the common problem of model overconfidence in OOD detection by strategically reducing the influence of hidden units, which enhances the model's capability to estimate OOD uncertainty more accurately. Implementing ActFun in the OOD-R dataset has led to significant performance enhancements, including an 18.42\% increase in AUROC of the GradNorm method and a 16.93\% decrease in FPR95 of the Energy method. Overall, our research not only advances the methodologies in OOD detection but also emphasizes the importance of dataset integrity for accurate algorithm evaluation.
Abstract:Remote photoplethysmography (rPPG) is a non-contact method for detecting physiological signals based on facial videos, holding high potential in various applications such as healthcare, affective computing, anti-spoofing, etc. Due to the periodicity nature of rPPG, the long-range dependency capturing capacity of the Transformer was assumed to be advantageous for such signals. However, existing approaches have not conclusively demonstrated the superior performance of Transformer over traditional convolutional neural network methods, this gap may stem from a lack of thorough exploration of rPPG periodicity. In this paper, we propose RhythmFormer, a fully end-to-end transformer-based method for extracting rPPG signals by explicitly leveraging the quasi-periodic nature of rPPG. The core module, Hierarchical Temporal Periodic Transformer, hierarchically extracts periodic features from multiple temporal scales. It utilizes dynamic sparse attention based on periodicity in the temporal domain, allowing for fine-grained modeling of rPPG features. Furthermore, a fusion stem is proposed to guide self-attention to rPPG features effectively, and it can be easily transferred to existing methods to enhance their performance significantly. RhythmFormer achieves state-of-the-art performance with fewer parameters and reduced computational complexity in comprehensive experiments compared to previous approaches. The codes are available at https://github.com/zizheng-guo/RhythmFormer.
Abstract:Infrared and visible image fusion has gradually proved to be a vital fork in the field of multi-modality imaging technologies. In recent developments, researchers not only focus on the quality of fused images but also evaluate their performance in downstream tasks. Nevertheless, the majority of methods seldom put their eyes on the mutual learning from different modalities, resulting in fused images lacking significant details and textures. To overcome this issue, we propose an interactive graph neural network (GNN)-based architecture between cross modality for fusion, called IGNet. Specifically, we first apply a multi-scale extractor to achieve shallow features, which are employed as the necessary input to build graph structures. Then, the graph interaction module can construct the extracted intermediate features of the infrared/visible branch into graph structures. Meanwhile, the graph structures of two branches interact for cross-modality and semantic learning, so that fused images can maintain the important feature expressions and enhance the performance of downstream tasks. Besides, the proposed leader nodes can improve information propagation in the same modality. Finally, we merge all graph features to get the fusion result. Extensive experiments on different datasets (TNO, MFNet and M3FD) demonstrate that our IGNet can generate visually appealing fused images while scoring averagely 2.59% mAP@.5 and 7.77% mIoU higher in detection and segmentation than the compared state-of-the-art methods. The source code of the proposed IGNet can be available at https://github.com/lok-18/IGNet.