Abstract:Model merging aims to combine multiple fine-tuned models into a single multi-task model without access to training data. Existing task-vector merging methods such as TIES, TSV-M, and Iso-C/CTS differ in their aggregation rules but treat all layers nearly uniformly. This assumption overlooks the strong layer-wise heterogeneity in large vision transformers, where shallow layers are sensitive to interference while deeper layers encode stable task-specific features. We introduce LARV, a training-free, data-free, merger-agnostic Layer-wise Adaptive Rescaling Veneer that plugs into any task-vector merger and assigns a per-layer scale to each task vector before aggregation, and show it consistently boosts diverse merging rules. LARV adaptively suppresses shallow-layer interference and amplifies deeper-layer alignment using a simple deterministic schedule, requiring no retraining or modification to existing mergers. To our knowledge, this is the first work to perform layer-aware scaling for task-vector merging. LARV computes simple data-free layer proxies and turns them into scales through a lightweight rule; we study several instantiations within one framework (e.g., tiered two/three-level scaling with fixed values, or continuous mappings) and show that tiered choices offer the best robustness, while continuous mappings remain an ablation. LARV is orthogonal to the base merger and adds negligible cost. On FusionBench with Vision Transformers, LARV consistently improves all task-vector baselines across 8/14/20-task settings; for example, Iso-C + LARV reaches 85.9% on ViT-B/32, 89.2% on ViT-B/16, and 92.6% on ViT-L/14. Layerwise analysis and corruption tests further indicate that LARV suppresses shallow-layer interference while modestly amplifying deeper, task-stable features, turning model merging into a robust, layer-aware procedure rather than a uniform one.
Abstract:Post-training quantization (PTQ) is widely used to compress large language models without retraining. However, many existing weight-only methods rely on heuristic objectives and greedy rounding, thus leading to noticeable degradation under low-bit quantization. In this work, we introduce OJBKQ (Objective-Joint Babai-Klein Quantization with K-Best Sampling), a layer-wise PTQ method that formulates weight quantization as a joint optimization problem over activations and weights. This formulation results in a multiple-right-hand-side box-constrained integer least squares (BILS) problem in each layer, which is NP-hard. For each column of the weight matrix, we apply an extended Babai nearest-plane algorithm and an extended version of Klein's randomized Babai algorithm to find the minimum-residual Babai-Klein point, a sub-optimal solution to the BILS problem. Experimental results on large language models show that OJBKQ achieves lower perplexity at 3-4 bits compared to existing PTQ approaches, while maintaining comparable computational cost.
Abstract:In this report, we introduce ERNIE 5.0, a natively autoregressive foundation model desinged for unified multimodal understanding and generation across text, image, video, and audio. All modalities are trained from scratch under a unified next-group-of-tokens prediction objective, based on an ultra-sparse mixture-of-experts (MoE) architecture with modality-agnostic expert routing. To address practical challenges in large-scale deployment under diverse resource constraints, ERNIE 5.0 adopts a novel elastic training paradigm. Within a single pre-training run, the model learns a family of sub-models with varying depths, expert capacities, and routing sparsity, enabling flexible trade-offs among performance, model size, and inference latency in memory- or time-constrained scenarios. Moreover, we systematically address the challenges of scaling reinforcement learning to unified foundation models, thereby guaranteeing efficient and stable post-training under ultra-sparse MoE architectures and diverse multimodal settings. Extensive experiments demonstrate that ERNIE 5.0 achieves strong and balanced performance across multiple modalities. To the best of our knowledge, among publicly disclosed models, ERNIE 5.0 represents the first production-scale realization of a trillion-parameter unified autoregressive model that supports both multimodal understanding and generation. To facilitate further research, we present detailed visualizations of modality-agnostic expert routing in the unified model, alongside comprehensive empirical analysis of elastic training, aiming to offer profound insights to the community.
Abstract:Large language models (LLMs) have revolutionized automated code generation, yet the evaluation of their real-world effectiveness remains limited by static benchmarks and simplistic metrics. We present ProxyWar, a novel framework that systematically assesses code generation quality by embedding LLM-generated agents within diverse, competitive game environments. Unlike existing approaches, ProxyWar evaluates not only functional correctness but also the operational characteristics of generated programs, combining automated testing, iterative code repair, and multi-agent tournaments to provide a holistic view of program behavior. Applied to a range of state-of-the-art coders and games, our approach uncovers notable discrepancies between benchmark scores and actual performance in dynamic settings, revealing overlooked limitations and opportunities for improvement. These findings highlight the need for richer, competition-based evaluation of code generation. Looking forward, ProxyWar lays a foundation for research into LLM-driven algorithm discovery, adaptive problem solving, and the study of practical efficiency and robustness, including the potential for models to outperform hand-crafted agents. The project is available at https://github.com/xinke-wang/ProxyWar.
Abstract:Reasoning over ultra-long documents requires synthesizing sparse evidence scattered across distant segments under strict memory constraints. While streaming agents enable scalable processing, their passive memory update strategy often fails to preserve low-salience bridging evidence required for multi-hop reasoning. We propose InfMem, a control-centric agent that instantiates System-2-style control via a PreThink-Retrieve-Write protocol. InfMem actively monitors evidence sufficiency, performs targeted in-document retrieval, and applies evidence-aware joint compression to update a bounded memory. To ensure reliable control, we introduce a practical SFT-to-RL training recipe that aligns retrieval, writing, and stopping decisions with end-task correctness. On ultra-long QA benchmarks from 32k to 1M tokens, InfMem consistently outperforms MemAgent across backbones. Specifically, InfMem improves average absolute accuracy by +10.17, +11.84, and +8.23 points on Qwen3-1.7B, Qwen3-4B, and Qwen2.5-7B, respectively, while reducing inference time by $3.9\times$ on average (up to $5.1\times$) via adaptive early stopping.
Abstract:A major challenge in training TableQA agents, compared to standard text- and image-based agents, is that answers cannot be inferred from a static input but must be reasoned through stepwise transformations of the table state, introducing multi-step reasoning complexity and environmental interaction. This leads to a research question: Can explicit feedback on table transformation action improve model reasoning capability? In this work, we introduce RE-Tab, a plug-and-play framework that architecturally enhances trajectory search via lightweight, training-free reward modeling by formulating the problem as a Partially Observable Markov Decision Process. We demonstrate that providing explicit verifiable rewards during State Transition (``What is the best action?'') and Simulative Reasoning (``Am I sure about the output?'') is crucial to steer the agent's navigation in table states. By enforcing stepwise reasoning with reward feedback in table transformations, RE-Tab achieves state-of-the-art performance in TableQA with almost 25\% drop in inference cost. Furthermore, a direct plug-and-play implementation of RE-Tab brings up to 41.77% improvement in QA accuracy and 33.33% drop in test-time inference samples for consistent answer. Consistent improvement pattern across various LLMs and state-of-the-art benchmarks further confirms RE-Tab's generalisability. The repository is available at https://github.com/ThomasK1018/RE_Tab .
Abstract:Reconstructing dynamical evolution from limited observations is a fundamental challenge in single-cell biology, where dynamic unbalanced optimal transport provides a principled framework for modeling coupled transport and mass variation. However, existing approaches rely on trajectory simulation at inference time, making inference a key bottleneck for scalable applications. In this work, we propose a mean-flow framework for unbalanced flow matching that summarizes both transport and mass-growth dynamics over arbitrary time intervals using mean velocity and mass-growth fields, enabling fast one-step generation without trajectory simulation. To solve dynamic unbalanced optimal transport under the Wasserstein-Fisher-Rao geometry, we further build on this framework to develop Wasserstein-Fisher-Rao Mean Flow Matching (WFR-MFM). Across synthetic and real single-cell RNA sequencing datasets, WFR-MFM achieves orders-of-magnitude faster inference than a range of existing baselines while maintaining high predictive accuracy, and enables efficient perturbation response prediction on large synthetic datasets with thousands of conditions.
Abstract:Visual Question-Answering (VQA) is a challenging multimodal task that requires integrating visual and textual information to generate accurate responses. While multimodal Retrieval-Augmented Generation (mRAG) has shown promise in enhancing VQA systems by providing more evidence on both image and text sides, the default procedure that addresses VQA queries, especially the knowledge-intensive ones, often relies on multi-stage pipelines of mRAG with inherent dependencies. To mitigate the inefficiency limitations while maintaining VQA task performance, this paper proposes a method that trains a multimodal planning agent, dynamically decomposing the mRAG pipeline to solve the VQA task. Our method optimizes the trade-off between efficiency and effectiveness by training the agent to intelligently determine the necessity of each mRAG step. In our experiments, the agent can help reduce redundant computations, cutting search time by over 60\% compared to existing methods and decreasing costly tool calls. Meanwhile, experiments demonstrate that our method outperforms all baselines, including a Deep Research agent and a carefully designed prompt-based method, on average over six various datasets. Code will be released.
Abstract:Model editing updates a pre-trained LLM with new facts or rules without re-training, while preserving unrelated behavior. In real deployment, edits arrive as long streams, and existing editors often face a plasticity-stability dilemma: locate-then-edit "hard writes" can accumulate interference over time, while null-space-style "hard preservation" preserves only what is explicitly constrained, so past edits can be overwritten and unconstrained behaviors may deviate, degrading general capabilities in the many-edits regime. We propose RLSEdit, a recursive least-squares editor for long sequential editing. RLSEdit formulates editing as an online quadratic optimization with soft constraints, minimizing a cumulative key-value fitting objective with two regularizers that control for both deviation from the pre-trained weights and from a designated anchor mapping. The resulting update admits an efficient online recursion via the Woodbury identity, with per-edit cost independent of history length and scaling only with the current edit size. We further provide deviation bounds and an asymptotic characterization of the adherence-preservation trade-off in the many-edits regime. Experiments on multiple model families demonstrate stable scaling to 10K edits, outperforming strong baselines in both edit success and holistic stability -- crucially retaining early edits, and preserving general capabilities on GLUE and held-out reasoning/code benchmarks.
Abstract:Speculative Decoding (SD) accelerates autoregressive large language model (LLM) inference by decoupling generation and verification. While recent methods improve draft quality by tightly coupling the drafter with the target model, the verification mechanism itself remains largely unchanged, relying on strict token-level rejection sampling. In practice, modern LLMs frequently operate in low-margin regimes where the target model exhibits weak preference among top candidates. In such cases, rejecting plausible runner-up tokens yields negligible information gain while incurring substantial rollback cost, leading to a fundamental inefficiency in verification. We propose Margin-Aware Speculative Verification, a training-free and domain-agnostic verification strategy that adapts to the target model's local decisiveness. Our method conditions verification on decision stability measured directly from the target logits and relaxes rejection only when strict verification provides minimal benefit. Importantly, the approach modifies only the verification rule and is fully compatible with existing target-coupled speculative decoding frameworks. Extensive experiments across model scales ranging from 8B to 235B demonstrate that our method delivers consistent and significant inference speedups over state-of-the-art baselines while preserving generation quality across diverse benchmarks.