Abstract:With the widespread adoption and deployment of autonomous driving, handling complex environments has become an unavoidable challenge. Due to the scarcity and diversity of extreme scenario datasets, current autonomous driving models struggle to effectively manage corner cases. This limitation poses a significant safety risk, according to the National Highway Traffic Safety Administration (NHTSA), autonomous vehicle systems have been involved in hundreds of reported crashes annually in the United States, occurred in corner cases like sun glare and fog, which caused a few fatal accident. Furthermore, in order to consistently maintain a robust and reliable autonomous driving system, it is essential for models not only to perform well on routine scenarios but also to adapt to newly emerging scenarios, especially those corner cases that deviate from the norm. This requires a learning mechanism that incrementally integrates new knowledge without degrading previously acquired capabilities. However, to the best of our knowledge, no existing continual learning methods have been proposed to ensure consistent and scalable corner case learning in autonomous driving. To address these limitations, we propose VLM-C4L, a continual learning framework that introduces Vision-Language Models (VLMs) to dynamically optimize and enhance corner case datasets, and VLM-C4L combines VLM-guided high-quality data extraction with a core data replay strategy, enabling the model to incrementally learn from diverse corner cases while preserving performance on previously routine scenarios, thus ensuring long-term stability and adaptability in real-world autonomous driving. We evaluate VLM-C4L on large-scale real-world autonomous driving datasets, including Waymo and the corner case dataset CODA.
Abstract:Recent shifts in the space of large language model (LLM) research have shown an increasing focus on novel architectures to compete with prototypical Transformer-based models that have long dominated this space. Linear recurrent models have proven to be a viable competitor due to their computational efficiency. However, such models still demonstrate a sizable gap compared to Transformers in terms of in-context learning among other tasks that require recalling information from a context. In this work, we introduce __Resona__, a simple and scalable framework for augmenting linear recurrent models with retrieval. __Resona__~augments models with the ability to integrate retrieved information from the provided input context, enabling tailored behavior to diverse task requirements. Experiments on a variety of linear recurrent models demonstrate that __Resona__-augmented models observe significant performance gains on a variety of synthetic as well as real-world natural language tasks, highlighting its ability to act as a general purpose method to improve the in-context learning and language modeling abilities of linear recurrent LLMs.
Abstract:In the pursuit of robust autonomous driving systems, models trained on real-world datasets often struggle to adapt to new environments, particularly when confronted with corner cases such as extreme weather conditions. Collecting these corner cases in the real world is non-trivial, which necessitates the use of simulators for validation. However,the high computational cost and the domain gap in data distribution have hindered the seamless transition between real and simulated driving scenarios. To tackle this challenge, we propose Retrieval-Augmented Learning for Autonomous Driving (RALAD), a novel framework designed to bridge the real-to-sim gap at a low cost. RALAD features three primary designs, including (1) domain adaptation via an enhanced Optimal Transport (OT) method that accounts for both individual and grouped image distances, (2) a simple and unified framework that can be applied to various models, and (3) efficient fine-tuning techniques that freeze the computationally expensive layers while maintaining robustness. Experimental results demonstrate that RALAD compensates for the performance degradation in simulated environments while maintaining accuracy in real-world scenarios across three different models. Taking Cross View as an example, the mIOU and mAP metrics in real-world scenarios remain stable before and after RALAD fine-tuning, while in simulated environments,the mIOU and mAP metrics are improved by 10.30% and 12.29%, respectively. Moreover, the re-training cost of our approach is reduced by approximately 88.1%. Our code is available at https://github.com/JiachengZuo/RALAD.git.
Abstract:Real-time object detection takes an essential part in the decision-making process of numerous real-world applications, including collision avoidance and path planning in autonomous driving systems. This paper presents a novel real-time streaming perception method named CorrDiff, designed to tackle the challenge of delays in real-time detection systems. The main contribution of CorrDiff lies in its adaptive delay-aware detector, which is able to utilize runtime-estimated temporal cues to predict objects' locations for multiple future frames, and selectively produce predictions that matches real-world time, effectively compensating for any communication and computational delays. The proposed model outperforms current state-of-the-art methods by leveraging motion estimation and feature enhancement, both for 1) single-frame detection for the current frame or the next frame, in terms of the metric mAP, and 2) the prediction for (multiple) future frame(s), in terms of the metric sAP (The sAP metric is to evaluate object detection algorithms in streaming scenarios, factoring in both latency and accuracy). It demonstrates robust performance across a range of devices, from powerful Tesla V100 to modest RTX 2080Ti, achieving the highest level of perceptual accuracy on all platforms. Unlike most state-of-the-art methods that struggle to complete computation within a single frame on less powerful devices, CorrDiff meets the stringent real-time processing requirements on all kinds of devices. The experimental results emphasize the system's adaptability and its potential to significantly improve the safety and reliability for many real-world systems, such as autonomous driving. Our code is completely open-sourced and is available at https://anonymous.4open.science/r/CorrDiff.
Abstract:Gene expression profiling provides profound insights into molecular mechanisms, but its time-consuming and costly nature often presents significant challenges. In contrast, whole-slide hematoxylin and eosin (H&E) stained histological images are readily accessible and allow for detailed examinations of tissue structure and composition at the microscopic level. Recent advancements have utilized these histological images to predict spatially resolved gene expression profiles. However, state-of-the-art works treat gene expression prediction as a multi-output regression problem, where each gene is learned independently with its own weights, failing to capture the shared dependencies and co-expression patterns between genes. Besides, existing works can only predict gene expression values for genes seen during training, limiting their ability to generalize to new, unseen genes. To address the above limitations, this paper presents GeneQuery, which aims to solve this gene expression prediction task in a question-answering (QA) manner for better generality and flexibility. Specifically, GeneQuery takes gene-related texts as queries and whole-slide images as contexts and then predicts the queried gene expression values. With such a transformation, GeneQuery can implicitly estimate the gene distribution by introducing the gene random variable. Besides, the proposed GeneQuery consists of two architecture implementations, i.e., spot-aware GeneQuery for capturing patterns between images and gene-aware GeneQuery for capturing patterns between genes. Comprehensive experiments on spatial transcriptomics datasets show that the proposed GeneQuery outperforms existing state-of-the-art methods on known and unseen genes. More results also demonstrate that GeneQuery can potentially analyze the tissue structure.
Abstract:Real-time object detection is critical for the decision-making process for many real-world applications, such as collision avoidance and path planning in autonomous driving. This work presents an innovative real-time streaming perception method, Transtreaming, which addresses the challenge of real-time object detection with dynamic computational delay. The core innovation of Transtreaming lies in its adaptive delay-aware transformer, which can concurrently predict multiple future frames and select the output that best matches the real-world present time, compensating for any system-induced computation delays. The proposed model outperforms the existing state-of-the-art methods, even in single-frame detection scenarios, by leveraging a transformer-based methodology. It demonstrates robust performance across a range of devices, from powerful V100 to modest 2080Ti, achieving the highest level of perceptual accuracy on all platforms. Unlike most state-of-the-art methods that struggle to complete computation within a single frame on less powerful devices, Transtreaming meets the stringent real-time processing requirements on all kinds of devices. The experimental results emphasize the system's adaptability and its potential to significantly improve the safety and reliability for many real-world systems, such as autonomous driving.
Abstract:Large language models (LLMs) have demonstrated great success in various fields, benefiting from their huge amount of parameters that store knowledge. However, LLMs still suffer from several key issues, such as hallucination problems, knowledge update issues, and lacking domain-specific expertise. The appearance of retrieval-augmented generation (RAG), which leverages an external knowledge database to augment LLMs, makes up those drawbacks of LLMs. This paper reviews all significant techniques of RAG, especially in the retriever and the retrieval fusions. Besides, tutorial codes are provided for implementing the representative techniques in RAG. This paper further discusses the RAG training, including RAG with/without datastore update. Then, we introduce the application of RAG in representative natural language processing tasks and industrial scenarios. Finally, this paper discusses the future directions and challenges of RAG for promoting its development.
Abstract:Deploying large language model inference remains challenging due to their high computational overhead. Early exiting accelerates model inference by adaptively reducing the number of inference layers. Existing methods require training internal classifiers to determine whether to exit at each intermediate layer. However, such classifier-based early exiting frameworks require significant effort to design and train the classifiers. To address these limitations, this paper proposes RAEE, a training-free Retrieval-Augmented Early Exiting framework for efficient inference. First, this paper demonstrates that the early exiting problem can be modeled as a distribution prediction problem, where the distribution is approximated using similar data's existing information. Next, the paper details the process of collecting existing information to build the retrieval database. Finally, based on the pre-built retrieval database, RAEE leverages the retrieved similar data's exiting information to guide the backbone model to exit at the layer, which is predicted by the approximated distribution. Experimental results demonstrate that the proposed RAEE can significantly accelerate inference. RAEE also achieves state-of-the-art zero-shot performance on 8 classification tasks.
Abstract:Large language models (LLMs) have received considerable attention recently due to their outstanding comprehension and reasoning capabilities, leading to great progress in many fields. The advancement of LLM techniques also offers promising opportunities to automate many tasks in the telecommunication (telecom) field. After pre-training and fine-tuning, LLMs can perform diverse downstream tasks based on human instructions, paving the way to artificial general intelligence (AGI)-enabled 6G. Given the great potential of LLM technologies, this work aims to provide a comprehensive overview of LLM-enabled telecom networks. In particular, we first present LLM fundamentals, including model architecture, pre-training, fine-tuning, inference and utilization, model evaluation, and telecom deployment. Then, we introduce LLM-enabled key techniques and telecom applications in terms of generation, classification, optimization, and prediction problems. Specifically, the LLM-enabled generation applications include telecom domain knowledge, code, and network configuration generation. After that, the LLM-based classification applications involve network security, text, image, and traffic classification problems. Moreover, multiple LLM-enabled optimization techniques are introduced, such as automated reward function design for reinforcement learning and verbal reinforcement learning. Furthermore, for LLM-aided prediction problems, we discussed time-series prediction models and multi-modality prediction problems for telecom. Finally, we highlight the challenges and identify the future directions of LLM-enabled telecom networks.
Abstract:In safety-critical applications such as medical imaging and autonomous driving, where decisions have profound implications for patient health and road safety, it is imperative to maintain both high adversarial robustness to protect against potential adversarial attacks and reliable uncertainty quantification in decision-making. With extensive research focused on enhancing adversarial robustness through various forms of adversarial training (AT), a notable knowledge gap remains concerning the uncertainty inherent in adversarially trained models. To address this gap, this study investigates the uncertainty of deep learning models by examining the performance of conformal prediction (CP) in the context of standard adversarial attacks within the adversarial defense community. It is first unveiled that existing CP methods do not produce informative prediction sets under the commonly used $l_{\infty}$-norm bounded attack if the model is not adversarially trained, which underpins the importance of adversarial training for CP. Our paper next demonstrates that the prediction set size (PSS) of CP using adversarially trained models with AT variants is often worse than using standard AT, inspiring us to research into CP-efficient AT for improved PSS. We propose to optimize a Beta-weighting loss with an entropy minimization regularizer during AT to improve CP-efficiency, where the Beta-weighting loss is shown to be an upper bound of PSS at the population level by our theoretical analysis. Moreover, our empirical study on four image classification datasets across three popular AT baselines validates the effectiveness of the proposed Uncertainty-Reducing AT (AT-UR).