Abstract:Large Language Models (LLMs) face challenges for on-device inference due to high memory demands. Traditional methods to reduce memory usage often compromise performance and lack adaptability. We propose FlexInfer, an optimized offloading framework for on-device inference, addressing these issues with techniques like asynchronous prefetching, balanced memory locking, and flexible tensor preservation. These strategies enhance memory efficiency and mitigate I/O bottlenecks, ensuring high performance within user-specified resource constraints. Experiments demonstrate that FlexInfer significantly improves throughput under limited resources, achieving up to 12.5 times better performance than existing methods and facilitating the deployment of large models on resource-constrained devices.
Abstract:With the acceleration of urbanization, modern urban traffic systems are becoming increasingly complex, leading to frequent traffic anomalies. These anomalies encompass not only common traffic jams but also more challenging issues such as phantom traffic jams, intersection deadlocks, and accident liability analysis, which severely impact traffic flow, vehicular safety, and overall transportation efficiency. Currently, existing solutions primarily rely on manual intervention by traffic police or artificial intelligence-based detection systems. However, these methods often suffer from response delays and inconsistent management due to inadequate resources, while AI detection systems, despite enhancing efficiency to some extent, still struggle to handle complex traffic anomalies in a real-time and precise manner. To address these issues, we propose CoT-VLM4Tar: (Chain of Thought Visual-Language Model for Traffic Anomaly Resolution), this innovative approach introduces a new chain-of-thought to guide the VLM in analyzing, reasoning, and generating solutions for traffic anomalies with greater reasonable and effective solution, and to evaluate the performance and effectiveness of our method, we developed a closed-loop testing framework based on the CARLA simulator. Furthermore, to ensure seamless integration of the solutions generated by the VLM with the CARLA simulator, we implement an itegration module that converts these solutions into executable commands. Our results demonstrate the effectiveness of VLM in the resolution of real-time traffic anomalies, providing a proof-of-concept for its integration into autonomous traffic management systems.
Abstract:Large language models (LLMs) exhibit excellent performance in various tasks. However, the memory requirements of LLMs present a great challenge when deploying on memory-limited devices, even for quantized LLMs. This paper introduces a framework to compress LLM after quantization further, achieving about 2.2x compression ratio. A compression-aware quantization is first proposed to enhance model weight compressibility by re-scaling the model parameters before quantization, followed by a pruning method to improve further. Upon this, we notice that decompression can be a bottleneck during practical scenarios. We then give a detailed analysis of the trade-off between memory usage and latency brought by the proposed method. A speed-adaptive method is proposed to overcome it. The experimental results show inference with the compressed model can achieve a 40% reduction in memory size with negligible loss in accuracy and inference speed.
Abstract:Large Language Models (LLMs) have achieved remarkable success in natural language processing tasks, but their massive size and computational demands hinder their deployment in resource-constrained environments. Existing structured pruning methods address this issue by removing redundant structures (e.g., elements, channels, layers) from the model. However, these methods employ a heuristic pruning strategy, which leads to suboptimal performance. Besides, they also ignore the data characteristics when pruning the model. To overcome these limitations, we propose EvoP, an evolutionary pruning framework for robust LLM inference. EvoP first presents a cluster-based calibration dataset sampling (CCDS) strategy for creating a more diverse calibration dataset. EvoP then introduces an evolutionary pruning pattern searching (EPPS) method to find the optimal pruning pattern. Compared to existing structured pruning techniques, EvoP achieves the best performance while maintaining the best efficiency. Experiments across different LLMs and different downstream tasks validate the effectiveness of the proposed EvoP, making it a practical and scalable solution for deploying LLMs in real-world applications.
Abstract:In the pursuit of robust autonomous driving systems, models trained on real-world datasets often struggle to adapt to new environments, particularly when confronted with corner cases such as extreme weather conditions. Collecting these corner cases in the real world is non-trivial, which necessitates the use of simulators for validation. However,the high computational cost and the domain gap in data distribution have hindered the seamless transition between real and simulated driving scenarios. To tackle this challenge, we propose Retrieval-Augmented Learning for Autonomous Driving (RALAD), a novel framework designed to bridge the real-to-sim gap at a low cost. RALAD features three primary designs, including (1) domain adaptation via an enhanced Optimal Transport (OT) method that accounts for both individual and grouped image distances, (2) a simple and unified framework that can be applied to various models, and (3) efficient fine-tuning techniques that freeze the computationally expensive layers while maintaining robustness. Experimental results demonstrate that RALAD compensates for the performance degradation in simulated environments while maintaining accuracy in real-world scenarios across three different models. Taking Cross View as an example, the mIOU and mAP metrics in real-world scenarios remain stable before and after RALAD fine-tuning, while in simulated environments,the mIOU and mAP metrics are improved by 10.30% and 12.29%, respectively. Moreover, the re-training cost of our approach is reduced by approximately 88.1%. Our code is available at https://github.com/JiachengZuo/RALAD.git.
Abstract:Existing Autonomous Driving Systems (ADS) independently make driving decisions, but they face two significant limitations. First, in complex scenarios, ADS may misinterpret the environment and make inappropriate driving decisions. Second, these systems are unable to incorporate human driving preferences in their decision-making processes. This paper proposes Autoware.Flex, a novel ADS system that incorporates human input into the driving process, allowing users to guide the ADS in making more appropriate decisions and ensuring their preferences are satisfied. Achieving this needs to address two key challenges: (1) translating human instructions, expressed in natural language, into a format the ADS can understand, and (2) ensuring these instructions are executed safely and consistently within the ADS' s decision-making framework. For the first challenge, we employ a Large Language Model (LLM) assisted by an ADS-specialized knowledge base to enhance domain-specific translation. For the second challenge, we design a validation mechanism to ensure that human instructions result in safe and consistent driving behavior. Experiments conducted on both simulators and a real-world autonomous vehicle demonstrate that Autoware.Flex effectively interprets human instructions and executes them safely.
Abstract:The multimodal model has demonstrated promise in histopathology. However, most multimodal models are based on H\&E and genomics, adopting increasingly complex yet black-box designs. In our paper, we propose a novel interpretable multimodal framework named SHAP-CAT, which uses a Shapley-value-based dimension reduction technique for effective multimodal fusion. Starting with two paired modalities -- H\&E and IHC images, we employ virtual staining techniques to enhance limited input data by generating a new clinical-related modality. Lightweight bag-level representations are extracted from image modalities and a Shapley-value-based mechanism is used for dimension reduction. For each dimension of the bag-level representation, attribution values are calculated to indicate how changes in the specific dimensions of the input affect the model output. In this way, we select a few top important dimensions of bag-level representation for each image modality to late fusion. Our experimental results demonstrate that the proposed SHAP-CAT framework incorporating synthetic modalities significantly enhances model performance, yielding a 5\% increase in accuracy for the BCI, an 8\% increase for IHC4BC-ER, and an 11\% increase for the IHC4BC-PR dataset.
Abstract:Whole slide images (WSIs) are gigapixel-scale digital images of H\&E-stained tissue samples widely used in pathology. The substantial size and complexity of WSIs pose unique analytical challenges. Multiple Instance Learning (MIL) has emerged as a powerful approach for addressing these challenges, particularly in cancer classification and detection. This survey provides a comprehensive overview of the challenges and methodologies associated with applying MIL to WSI analysis, including attention mechanisms, pseudo-labeling, transformers, pooling functions, and graph neural networks. Additionally, it explores the potential of MIL in discovering cancer cell morphology, constructing interpretable machine learning models, and quantifying cancer grading. By summarizing the current challenges, methodologies, and potential applications of MIL in WSI analysis, this survey aims to inform researchers about the state of the field and inspire future research directions.
Abstract:Recent advancements in large language models (LLMs) have catalyzed significant interest in the automatic generation of Register-Transfer Level (RTL) code, particularly Verilog, from natural language instructions. While commercial LLMs like ChatGPT have dominated this domain, open-source alternatives have lagged considerably in performance, limiting the flexibility and data privacy of this emerging technology. This study introduces a novel approach utilizing reinforcement learning with golden code feedback to enhance the performance of pre-trained models. Leveraging open-source data and base models, we have achieved state-of-the-art (SOTA) results with a substantial margin. Notably, our 6.7B parameter model \ours{} demonstrates superior performance compared to current best-in-class 13B and 16B models. Furthermore, through a comprehensive analysis of the limitations in direct fine-tuning and the training dynamics of reinforcement learning, we posit that the development of comprehensive supervisory signals, which are align with the inherent parallel semantics of Verilog code, is critical to effective generation. The code and data associated with this research are publicly available at \url{https://github.com/CatIIIIIIII/veriseek}. The model weights can be accessed at \url{https://huggingface.co/WANGNingroci/VeriSeek}.
Abstract:Large language models (LLMs) have demonstrated great success in various fields, benefiting from their huge amount of parameters that store knowledge. However, LLMs still suffer from several key issues, such as hallucination problems, knowledge update issues, and lacking domain-specific expertise. The appearance of retrieval-augmented generation (RAG), which leverages an external knowledge database to augment LLMs, makes up those drawbacks of LLMs. This paper reviews all significant techniques of RAG, especially in the retriever and the retrieval fusions. Besides, tutorial codes are provided for implementing the representative techniques in RAG. This paper further discusses the RAG training, including RAG with/without datastore update. Then, we introduce the application of RAG in representative natural language processing tasks and industrial scenarios. Finally, this paper discusses the future directions and challenges of RAG for promoting its development.