Abstract:We recently developed a new approach to get a stabilized image from a sequence of frames acquired through atmospheric turbulence. The goal of this algorihtm is to remove the geometric distortions due by the atmosphere movements. This method is based on a variational formulation and is efficiently solved by the use of Bregman iterations and the operator splitting method. In this paper we propose to study the influence of the choice of the regularizing term in the model. Then we proposed to experiment some of the most used regularization constraints available in the litterature.
Abstract:A novel approach is presented to recover an image degraded by atmospheric turbulence. Given a sequence of frames affected by turbulence, we construct a variational model to characterize the static image. The optimization problem is solved by Bregman Iteration and the operator splitting method. Our algorithm is simple, efficient, and can be easily generalized for different scenarios.
Abstract:The multimodal model has demonstrated promise in histopathology. However, most multimodal models are based on H\&E and genomics, adopting increasingly complex yet black-box designs. In our paper, we propose a novel interpretable multimodal framework named SHAP-CAT, which uses a Shapley-value-based dimension reduction technique for effective multimodal fusion. Starting with two paired modalities -- H\&E and IHC images, we employ virtual staining techniques to enhance limited input data by generating a new clinical-related modality. Lightweight bag-level representations are extracted from image modalities and a Shapley-value-based mechanism is used for dimension reduction. For each dimension of the bag-level representation, attribution values are calculated to indicate how changes in the specific dimensions of the input affect the model output. In this way, we select a few top important dimensions of bag-level representation for each image modality to late fusion. Our experimental results demonstrate that the proposed SHAP-CAT framework incorporating synthetic modalities significantly enhances model performance, yielding a 5\% increase in accuracy for the BCI, an 8\% increase for IHC4BC-ER, and an 11\% increase for the IHC4BC-PR dataset.
Abstract:Whole slide images (WSIs) are gigapixel-scale digital images of H\&E-stained tissue samples widely used in pathology. The substantial size and complexity of WSIs pose unique analytical challenges. Multiple Instance Learning (MIL) has emerged as a powerful approach for addressing these challenges, particularly in cancer classification and detection. This survey provides a comprehensive overview of the challenges and methodologies associated with applying MIL to WSI analysis, including attention mechanisms, pseudo-labeling, transformers, pooling functions, and graph neural networks. Additionally, it explores the potential of MIL in discovering cancer cell morphology, constructing interpretable machine learning models, and quantifying cancer grading. By summarizing the current challenges, methodologies, and potential applications of MIL in WSI analysis, this survey aims to inform researchers about the state of the field and inspire future research directions.
Abstract:Immunohistochemistry (IHC) plays a crucial role in pathology as it detects the over-expression of protein in tissue samples. However, there are still fewer machine learning model studies on IHC's impact on accurate cancer grading. We discovered that IHC and H\&E possess distinct advantages and disadvantages while possessing certain complementary qualities. Building on this observation, we developed a two-stage multi-modal bilinear model with a feature pooling module. This model aims to maximize the potential of both IHC and HE's feature representation, resulting in improved performance compared to their individual use. Our experiments demonstrate that incorporating IHC data into machine learning models, alongside H\&E stained images, leads to superior predictive results for cancer grading. The proposed framework achieves an impressive ACC higher of 0.953 on the public dataset BCI.
Abstract:Pre-processing for whole slide images can affect classification performance both in the training and inference stages. Our study analyzes the impact of pre-processing parameters on inference and training across single- and multiple-domain datasets. However, searching for an optimal parameter set is time-consuming. To overcome this, we propose a novel Similarity-based Simulated Annealing approach for fast parameter tuning to enhance inference performance on single-domain data. Our method demonstrates significant performance improvements in accuracy, which raise accuracy from 0.512 to 0.847 in a single domain. We further extend our insight into training performance in multi-domain data by employing a novel Bayesian optimization to search optimal pre-processing parameters, resulting in a high AUC of 0.967. We highlight that better pre-processing for WSI can contribute to further accuracy improvement in the histology area.
Abstract:Deploying Large Language Models (LLMs) on edge or mobile devices offers significant benefits, such as enhanced data privacy and real-time processing capabilities. However, it also faces critical challenges due to the substantial memory requirement of LLMs. Quantization is an effective way of reducing the model size while maintaining good performance. However, even after quantization, LLMs may still be too big to fit entirely into the limited memory of edge or mobile devices and have to be partially loaded from the storage to complete the inference. In this case, the I/O latency of model loading becomes the bottleneck of the LLM inference latency. In this work, we take a preliminary step of studying applying data compression techniques to reduce data movement and thus speed up the inference of quantized LLM on memory-constrained devices. In particular, we discussed the compressibility of quantized LLMs, the trade-off between the compressibility and performance of quantized LLMs, and opportunities to optimize both of them jointly.
Abstract:This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of Gemini models in cross-modal reasoning and language understanding will enable a wide variety of use cases and we discuss our approach toward deploying them responsibly to users.
Abstract:3D object detection has a pivotal role in a wide range of applications, most notably autonomous driving and robotics. These applications are commonly deployed on edge devices to promptly interact with the environment, and often require near real-time response. With limited computation power, it is challenging to execute 3D detection on the edge using highly complex neural networks. Common approaches such as offloading to the cloud brings latency overheads due to the large amount of 3D point cloud data during transmission. To resolve the tension between wimpy edge devices and compute-intensive inference workloads, we explore the possibility of transforming fast 2D detection results to extrapolate 3D bounding boxes. To this end, we present Moby, a novel system that demonstrates the feasibility and potential of our approach. Our main contributions are two-fold: First, we design a 2D-to-3D transformation pipeline that takes as input the point cloud data from LiDAR and 2D bounding boxes from camera that are captured at exactly the same time, and generate 3D bounding boxes efficiently and accurately based on detection results of the previous frames without running 3D detectors. Second, we design a frame offloading scheduler that dynamically launches a 3D detection when the error of 2D-to-3D transformation accumulates to a certain level, so the subsequent transformations can draw upon the latest 3D detection results with better accuracy. Extensive evaluation on NVIDIA Jetson TX2 with the autonomous driving dataset KITTI and real-world 4G/LTE traces shows that, Moby reduces the end-to-end latency by up to 91.9% with mild accuracy drop compared to baselines. Further, Moby shows excellent energy efficiency by saving power consumption and memory footprint up to 75.7% and 48.1%, respectively.
Abstract:Deep-learning-based compressor has received interests recently due to much improved compression ratio. However, modern approaches suffer from long execution time. To ease this problem, this paper targets on cutting down the execution time of deep-learning-based compressors. Building history-dependencies sequentially (e.g., recurrent neural networks) is responsible for long inference latency. Instead, we introduce transformer into deep learning compressors to build history-dependencies in parallel. However, existing transformer is too heavy in computation and incompatible to compression tasks. This paper proposes a fast general-purpose lossless compressor, TRACE, by designing a compression-friendly structure based on a single-layer transformer. We first design a new metric to advise the selection part of compression model structures. Byte-grouping and Shared-ffn schemes are further proposed to fully utilize the capacity of the single-layer transformer. These features allow TRACE to achieve competitive compression ratio and a much faster speed. In addition, we further accelerate the compression procedure by designing a controller to reduce the parameter updating overhead. Experiments show that TRACE achieves an overall $\sim$3x speedup while keeps a comparable compression ratio to the state-of-the-art compressors. The source code for TRACE and links to the datasets are available at https://github.com/mynotwo/A-Fast-Transformer-based-General-Purpose-LosslessCompressor.