Abstract:Secure communication is crucial in many emerging systems enabled by unmanned aerial vehicle (UAV) communication networks. To protect legitimate communication in a chaotic UAV environment, where both eavesdropping and jamming become straightforward from multiple adversaries with line-of-sight signal propagation, a new reliable and integrated physical layer security mechanism is proposed in this paper for a massive multiple-input-multiple-output (MIMO) UAV system. Particularly, a physical layer fingerprint, also called a tag, is first embedded into each message for authentication purpose. We then propose to reuse the tag additionally as a reference to encode each message to ensure secrecy for confidentiality enhancement at a low cost. Specifically, we create a new dual-reference symmetric tag generation mechanism by inputting an encoding-insensitive feature of plaintext along with the key into a hash function. At a legitimate receiver, an expected tag, reliable for decoding, can be symmetrically regenerated based on the received ciphertext, and authentication can be performed by comparing the regenerated reference tag to the received tag. However, an illegitimate receiver can only receive the fuzzy tag which can not be used to decode the received message. Additionally, we introduce artificial noise (AN) to degrade eavesdropping to further decrease message leakage. To verify the efficiency of our proposed tag-based encoding (TBE) scheme, we formulate two optimization problems including ergodic sum secrecy rate maximization and authentication fail probability minimization. The power allocation solutions are derived by difference-of-convex (DC) programming and the Lagrange method, respectively. The simulation results demonstrate the superior performance of the proposed TBE approach compared to the prior AN-aided tag embedding scheme.
Abstract:Smart grid, through networked smart meters employing the non-intrusive load monitoring (NILM) technique, can considerably discern the usage patterns of residential appliances. However, this technique also incurs privacy leakage. To address this issue, we propose an innovative scheme based on adversarial attack in this paper. The scheme effectively prevents NILM models from violating appliance-level privacy, while also ensuring accurate billing calculation for users. To achieve this objective, we overcome two primary challenges. First, as NILM models fall under the category of time-series regression models, direct application of traditional adversarial attacks designed for classification tasks is not feasible. To tackle this issue, we formulate a novel adversarial attack problem tailored specifically for NILM and providing a theoretical foundation for utilizing the Jacobian of the NILM model to generate imperceptible perturbations. Leveraging the Jacobian, our scheme can produce perturbations, which effectively misleads the signal prediction of NILM models to safeguard users' appliance-level privacy. The second challenge pertains to fundamental utility requirements, where existing adversarial attack schemes struggle to achieve accurate billing calculation for users. To handle this problem, we introduce an additional constraint, mandating that the sum of added perturbations within a billing period must be precisely zero. Experimental validation on real-world power datasets REDD and UK-DALE demonstrates the efficacy of our proposed solutions, which can significantly amplify the discrepancy between the output of the targeted NILM model and the actual power signal of appliances, and enable accurate billing at the same time. Additionally, our solutions exhibit transferability, making the generated perturbation signal from one target model applicable to other diverse NILM models.
Abstract:Recently machine unlearning (MU) is proposed to remove the imprints of revoked samples from the already trained model parameters, to solve users' privacy concern. Different from the runtime expensive retraining from scratch, there exist two research lines, exact MU and approximate MU with different favorites in terms of accuracy and efficiency. In this paper, we present a novel hybrid strategy on top of them to achieve an overall success. It implements the unlearning operation with an acceptable computation cost, while simultaneously improving the accuracy as much as possible. Specifically, it runs reasonable unlearning techniques by estimating the retraining workloads caused by revocations. If the workload is lightweight, it performs retraining to derive the model parameters consistent with the accurate ones retrained from scratch. Otherwise, it outputs the unlearned model by directly modifying the current parameters, for better efficiency. In particular, to improve the accuracy in the latter case, we propose an optimized version to amend the output model with lightweight runtime penalty. We particularly study the boundary of two approaches in our frameworks to adaptively make the smart selection. Extensive experiments on real datasets validate that our proposals can improve the unlearning efficiency by 1.5$\times$ to 8$\times$ while achieving comparable accuracy.
Abstract:As an algorithmic framework for learning to learn, meta-learning provides a promising solution for few-shot text classification. However, most existing research fail to give enough attention to class labels. Traditional basic framework building meta-learner based on prototype networks heavily relies on inter-class variance, and it is easily influenced by noise. To address these limitations, we proposes a simple and effective few-shot text classification framework. In particular, the corresponding label templates are embed into input sentences to fully utilize the potential value of class labels, guiding the pre-trained model to generate more discriminative text representations through the semantic information conveyed by labels. With the continuous influence of label semantics, supervised contrastive learning is utilized to model the interaction information between support samples and query samples. Furthermore, the averaging mechanism is replaced with an attention mechanism to highlight vital semantic information. To verify the proposed scheme, four typical datasets are employed to assess the performance of different methods. Experimental results demonstrate that our method achieves substantial performance enhancements and outperforms existing state-of-the-art models on few-shot text classification tasks.
Abstract:Artificial Intelligence (AI) has apparently become one of the most important techniques discovered by humans in history while the human brain is widely recognized as one of the most complex systems in the universe. One fundamental critical question which would affect human sustainability remains open: Will artificial intelligence (AI) evolve to surpass human intelligence in the future? This paper shows that in theory new AI twins with fresh cellular level of AI techniques for neuroscience could approximate the brain and its functioning systems (e.g. perception and cognition functions) with any expected small error and AI without restrictions could surpass human intelligence with probability one in the end. This paper indirectly proves the validity of the conjecture made by Frank Rosenblatt 70 years ago about the potential capabilities of AI, especially in the realm of artificial neural networks. Intelligence is just one of fortuitous but sophisticated creations of the nature which has not been fully discovered. Like mathematics and physics, with no restrictions artificial intelligence would lead to a new subject with its self-contained systems and principles. We anticipate that this paper opens new doors for 1) AI twins and other AI techniques to be used in cellular level of efficient neuroscience dynamic analysis, functioning analysis of the brain and brain illness solutions; 2) new worldwide collaborative scheme for interdisciplinary teams concurrently working on and modelling different types of neurons and synapses and different level of functioning subsystems of the brain with AI techniques; 3) development of low energy of AI techniques with the aid of fundamental neuroscience properties; and 4) new controllable, explainable and safe AI techniques with reasoning capabilities of discovering principles in nature.
Abstract:Temporal action detection (TAD), which locates and recognizes action segments, remains a challenging task in video understanding due to variable segment lengths and ambiguous boundaries. Existing methods treat neighboring contexts of an action segment indiscriminately, leading to imprecise boundary predictions. We introduce a single-stage ContextDet framework, which makes use of large-kernel convolutions in TAD for the first time. Our model features a pyramid adaptive context aggragation (ACA) architecture, capturing long context and improving action discriminability. Each ACA level consists of two novel modules. The context attention module (CAM) identifies salient contextual information, encourages context diversity, and preserves context integrity through a context gating block (CGB). The long context module (LCM) makes use of a mixture of large- and small-kernel convolutions to adaptively gather long-range context and fine-grained local features. Additionally, by varying the length of these large kernels across the ACA pyramid, our model provides lightweight yet effective context aggregation and action discrimination. We conducted extensive experiments and compared our model with a number of advanced TAD methods on six challenging TAD benchmarks: MultiThumos, Charades, FineAction, EPIC-Kitchens 100, Thumos14, and HACS, demonstrating superior accuracy at reduced inference speed.
Abstract:Modeling long sequences is crucial for various large-scale models; however, extending existing architectures to handle longer sequences presents significant technical and resource challenges. In this paper, we propose an efficient and flexible attention architecture that enables the extension of context lengths in large language models with reduced computational resources and fine-tuning time compared to other excellent methods. Specifically, we introduce correlation-aware selection and merging mechanisms to facilitate efficient sparse attention. In addition, we also propose a novel data augmentation technique involving positional encodings to enhance generalization to unseen positions. The results are as follows: First, using a single A100, we achieve fine-tuning on Llama2-7B with a sequence length of 32K, which is more efficient than other methods that rely on subsets for regression. Second, we present a comprehensive method for extending context lengths across the pre-training, fine-tuning, and inference phases. During pre-training, our attention mechanism partially breaks translation invariance during token selection, so we apply positional encodings only to the selected tokens. This approach achieves relatively high performance and significant extrapolation capabilities. For fine-tuning, we introduce Cyclic, Randomly Truncated, and Dynamically Growing NTK Positional Embedding (CRD NTK). This design allows fine-tuning with a sequence length of only 16K, enabling models such as Llama2-7B and Mistral-7B to perform inference with context lengths of up to 1M or even arbitrary lengths. Our method achieves 100\% accuracy on the passkey task with a context length of 4M and maintains stable perplexity at a 1M context length. This represents at least a 64-fold reduction in resource requirements compared to traditional full-attention mechanisms, while still achieving competitive performance.
Abstract:Recent advancements in large language models (LLMs) have catalyzed significant interest in the automatic generation of Register-Transfer Level (RTL) code, particularly Verilog, from natural language instructions. While commercial LLMs like ChatGPT have dominated this domain, open-source alternatives have lagged considerably in performance, limiting the flexibility and data privacy of this emerging technology. This study introduces a novel approach utilizing reinforcement learning with golden code feedback to enhance the performance of pre-trained models. Leveraging open-source data and base models, we have achieved state-of-the-art (SOTA) results with a substantial margin. Notably, our 6.7B parameter model \ours{} demonstrates superior performance compared to current best-in-class 13B and 16B models. Furthermore, through a comprehensive analysis of the limitations in direct fine-tuning and the training dynamics of reinforcement learning, we posit that the development of comprehensive supervisory signals, which are align with the inherent parallel semantics of Verilog code, is critical to effective generation. The code and data associated with this research are publicly available at \url{https://github.com/CatIIIIIIII/veriseek}. The model weights can be accessed at \url{https://huggingface.co/WANGNingroci/VeriSeek}.
Abstract:Federated learning, while being a promising approach for collaborative model training, is susceptible to poisoning attacks due to its decentralized nature. Backdoor attacks, in particular, have shown remarkable stealthiness, as they selectively compromise predictions for inputs containing triggers. Previous endeavors to detect and mitigate such attacks are based on the Independent and Identically Distributed (IID) data assumption where benign model updates exhibit high-level similarity in multiple feature spaces due to IID data. Thus, outliers are detected as backdoor attacks. Nevertheless, non-IID data presents substantial challenges in backdoor attack detection, as the data variety introduces variance among benign models, making outlier detection-based mechanisms less effective. We propose a novel distribution-aware anomaly detection mechanism, BoBa, to address this problem. In order to differentiate outliers arising from data variety versus backdoor attack, we propose to break down the problem into two steps: clustering clients utilizing their data distribution followed by a voting-based detection. Based on the intuition that clustering and subsequent backdoor detection can drastically benefit from knowing client data distributions, we propose a novel data distribution inference mechanism. To improve detection robustness, we introduce an overlapping clustering method, where each client is associated with multiple clusters, ensuring that the trustworthiness of a model update is assessed collectively by multiple clusters rather than a single cluster. Through extensive evaluations, we demonstrate that BoBa can reduce the attack success rate to lower than 0.001 while maintaining high main task accuracy across various attack strategies and experimental settings.
Abstract:The rapid growth of large language models(LLMs) has emerged as a prominent trend in the field of artificial intelligence. However, current state-of-the-art LLMs are predominantly based on English. They encounter limitations when directly applied to tasks in specific cultural domains, due to deficiencies in domain-specific knowledge and misunderstandings caused by differences in cultural values. To address this challenge, our paper proposes a rapid adaptation method for large models in specific cultural contexts, which leverages instruction-tuning based on specific cultural knowledge and safety values data. Taking Chinese as the specific cultural context and utilizing the LLaMA3-8B as the experimental English LLM, the evaluation results demonstrate that the adapted LLM significantly enhances its capabilities in domain-specific knowledge and adaptability to safety values, while maintaining its original expertise advantages.