Abstract:Semantic information refers to the meaning conveyed through words, phrases, and contextual relationships within a given linguistic structure. Humans can leverage semantic information, such as familiar linguistic patterns and contextual cues, to reconstruct incomplete or masked speech signals in noisy environments. However, existing speech enhancement (SE) approaches often overlook the rich semantic information embedded in speech, which is crucial for improving intelligibility, speaker consistency, and overall quality of enhanced speech signals. To enrich the SE model with semantic information, we employ language models as an efficient semantic learner and propose a comprehensive framework tailored for language model-based speech enhancement, called \textit{GenSE}. Specifically, we approach SE as a conditional language modeling task rather than a continuous signal regression problem defined in existing works. This is achieved by tokenizing speech signals into semantic tokens using a pre-trained self-supervised model and into acoustic tokens using a custom-designed single-quantizer neural codec model. To improve the stability of language model predictions, we propose a hierarchical modeling method that decouples the generation of clean semantic tokens and clean acoustic tokens into two distinct stages. Moreover, we introduce a token chain prompting mechanism during the acoustic token generation stage to ensure timbre consistency throughout the speech enhancement process. Experimental results on benchmark datasets demonstrate that our proposed approach outperforms state-of-the-art SE systems in terms of speech quality and generalization capability.
Abstract:Distributed stochastic optimization algorithms can handle large-scale data simultaneously and accelerate model training. However, the sparsity of distributed networks and the heterogeneity of data limit these advantages. This paper proposes a momentum-accelerated distributed stochastic gradient algorithm, referred to as Exact-Diffusion with Momentum (EDM), which can correct the bias caused by data heterogeneity and introduces the momentum method commonly used in deep learning to accelerate the convergence of the algorithm. We theoretically demonstrate that this algorithm converges to the neighborhood of the optimum sub-linearly irrelevant to data heterogeneity when applied to non-convex objective functions and linearly under the Polyak-{\L}ojasiewicz condition (a weaker assumption than $\mu$-strongly convexity). Finally, we evaluate the performance of the proposed algorithm by simulation, comparing it with a range of existing decentralized optimization algorithms to demonstrate its effectiveness in addressing data heterogeneity and network sparsity.
Abstract:An ideal multimodal agent should be aware of the quality of its input modalities. Recent advances have enabled large language models (LLMs) to incorporate auditory systems for handling various speech-related tasks. However, most audio LLMs remain unaware of the quality of the speech they process. This limitation arises because speech quality evaluation is typically excluded from multi-task training due to the lack of suitable datasets. To address this, we introduce the first natural language-based speech evaluation corpus, generated from authentic human ratings. In addition to the overall Mean Opinion Score (MOS), this corpus offers detailed analysis across multiple dimensions and identifies causes of quality degradation. It also enables descriptive comparisons between two speech samples (A/B tests) with human-like judgment. Leveraging this corpus, we propose an alignment approach with LLM distillation (ALLD) to guide the audio LLM in extracting relevant information from raw speech and generating meaningful responses. Experimental results demonstrate that ALLD outperforms the previous state-of-the-art regression model in MOS prediction, with a mean square error of 0.17 and an A/B test accuracy of 98.6%. Additionally, the generated responses achieve BLEU scores of 25.8 and 30.2 on two tasks, surpassing the capabilities of task-specific models. This work advances the comprehensive perception of speech signals by audio LLMs, contributing to the development of real-world auditory and sensory intelligent agents.
Abstract:High-fidelity speech enhancement often requires sophisticated modeling to capture intricate, multiscale patterns. Standard activation functions, while introducing nonlinearity, lack the flexibility to fully address this complexity. Kolmogorov-Arnold Networks (KAN), an emerging methodology that employs learnable activation functions on graph edges, present a promising alternative. This work investigates two novel KAN variants based on rational and radial basis functions for speech enhancement. We integrate the rational variant into the 1D CNN blocks of Demucs and the GRU-Transformer blocks of MP-SENet, while the radial variant is adapted to the 2D CNN-based decoders of MP-SENet. Experiments on the VoiceBank-DEMAND dataset show that replacing standard activations with KAN-based activations improves speech quality across both the time-domain and time-frequency domain methods with minimal impact on model size and FLOP, underscoring KAN's potential to improve speech enhancement models.
Abstract:Given recent advances in generative AI technology, a key question is how large language models (LLMs) can enhance acoustic modeling tasks using text decoding results from a frozen, pretrained automatic speech recognition (ASR) model. To explore new capabilities in language modeling for speech processing, we introduce the generative speech transcription error correction (GenSEC) challenge. This challenge comprises three post-ASR language modeling tasks: (i) post-ASR transcription correction, (ii) speaker tagging, and (iii) emotion recognition. These tasks aim to emulate future LLM-based agents handling voice-based interfaces while remaining accessible to a broad audience by utilizing open pretrained language models or agent-based APIs. We also discuss insights from baseline evaluations, as well as lessons learned for designing future evaluations.
Abstract:In this paper, we introduce SSR-Speech, a neural codec autoregressive model designed for stable, safe, and robust zero-shot text-based speech editing and text-to-speech synthesis. SSR-Speech is built on a Transformer decoder and incorporates classifier-free guidance to enhance the stability of the generation process. A watermark Encodec is proposed to embed frame-level watermarks into the edited regions of the speech so that which parts were edited can be detected. In addition, the waveform reconstruction leverages the original unedited speech segments, providing superior recovery compared to the Encodec model. Our approach achieves the state-of-the-art performance in the RealEdit speech editing task and the LibriTTS text-to-speech task, surpassing previous methods. Furthermore, SSR-Speech excels in multi-span speech editing and also demonstrates remarkable robustness to background sounds. Source code and demos are released.
Abstract:The application of large language models to facilitate automated software operations and tool generation (SOTG), thus augmenting software productivity, mirrors the early stages of human evolution when the ability to create and use tools accelerated the progress of civilization. These complex tasks require AI to continuously summarize and improve. Current research often overlooks the importance of converting real-time task experiences into system memory and differentiating the value of existing knowledge for future reference. This paper addresses these issues by evolving external memory models into Memory-Loop Networks for timely memorization and experience referencing. We also enhance a RAG mechanism with knowledge precision segmentation to utilize memory based on value differentiation, and design the MaxMind model for SOTG accordingly.To demonstrate our approach, we developed MaxMind4Sheet, an electronic spreadsheet processing system aligned with the MaxMind philosophy. Comparative experiments with SheetCopilot have demonstrated that the accumulation and recycling of task memories lead to a steady enhancement in task success rate, with an improvement rate of approximately 3%-6% per round in this implementation example. Note that as the memories continue to grow, this cumulative improvement may be substantial. The inclusion of memory recycling can also boost the system's task execution efficiency by up to 25%, and it can address the retraining issue faced by LLMs when handling specialized tasks through memories transfer.These suggest that MaxMind has significant potential to enhance the capabilities and productivity of LLM systems in SOTG.
Abstract:In this paper, we propose reverse inference optimization (RIO), a simple and effective method designed to enhance the robustness of autoregressive-model-based zero-shot text-to-speech (TTS) systems using reinforcement learning from human feedback (RLHF). To assess the quality of speech produced by the TTS system without human annotations, RIO introduces a novel concept termed as reverse inference based on the Bayesian principle, which suggests that a high-quality generated speech should be able to be used as a prompt for subsequent generation using the same TTS model. By leveraging reverse inference as the standard to select exemplars used in RLHF from the speech samples generated by the TTS system itself, RIO steers the subsequent optimization towards a direction of enhancing the TTS robustness. The RIO framework, comprising sampling, automatic annotating, and learning, obviates the need for a reward model or pairwise preference data, and significantly improves the stability of zero-shot TTS performance by reducing the discrepancies between training and inference conditions. Our experimental results verify that RIO can effectively improve both subjective and objective metrics, including mean opinion scores, word error rates, and speaker similarity. Remarkably, RIO can also diminish the incidence of bad outputs to nearly zero percent, rivalling the robustness when using ground-truth speech as the prompt.
Abstract:In recent years, text-to-speech (TTS) technology has witnessed impressive advancements, particularly with large-scale training datasets, showcasing human-level speech quality and impressive zero-shot capabilities on unseen speakers. However, despite human subjective evaluations, such as the mean opinion score (MOS), remaining the gold standard for assessing the quality of synthetic speech, even state-of-the-art TTS approaches have kept human feedback isolated from training that resulted in mismatched training objectives and evaluation metrics. In this work, we investigate a novel topic of integrating subjective human evaluation into the TTS training loop. Inspired by the recent success of reinforcement learning from human feedback, we propose a comprehensive sampling-annotating-learning framework tailored to TTS optimization, namely uncertainty-aware optimization (UNO). Specifically, UNO eliminates the need for a reward model or preference data by directly maximizing the utility of speech generations while considering the uncertainty that lies in the inherent variability in subjective human speech perception and evaluations. Experimental results of both subjective and objective evaluations demonstrate that UNO considerably improves the zero-shot performance of TTS models in terms of MOS, word error rate, and speaker similarity. Additionally, we present a remarkable ability of UNO that it can adapt to the desired speaking style in emotional TTS seamlessly and flexibly.
Abstract:We propose an unsupervised adaptation framework, Self-TAught Recognizer (STAR), which leverages unlabeled data to enhance the robustness of automatic speech recognition (ASR) systems in diverse target domains, such as noise and accents. STAR is developed for prevalent speech foundation models based on Transformer-related architecture with auto-regressive decoding (e.g., Whisper, Canary). Specifically, we propose a novel indicator that empirically integrates step-wise information during decoding to assess the token-level quality of pseudo labels without ground truth, thereby guiding model updates for effective unsupervised adaptation. Experimental results show that STAR achieves an average of 13.5% relative reduction in word error rate across 14 target domains, and it sometimes even approaches the upper-bound performance of supervised adaptation. Surprisingly, we also observe that STAR prevents the adapted model from the common catastrophic forgetting problem without recalling source-domain data. Furthermore, STAR exhibits high data efficiency that only requires less than one-hour unlabeled data, and seamless generality to alternative large speech models and speech translation tasks. Our code aims to open source to the research communities.