Abstract:Large-scale egocentric video datasets capture diverse human activities across a wide range of scenarios, offering rich and detailed insights into how humans interact with objects, especially those that require fine-grained dexterous control. Such complex, dexterous skills with precise controls are crucial for many robotic manipulation tasks, yet are often insufficiently addressed by traditional data-driven approaches to robotic manipulation. To address this gap, we leverage manipulation priors learned from large-scale egocentric video datasets to improve policy learning for dexterous robotic manipulation tasks. We present MAPLE, a novel method for dexterous robotic manipulation that exploits rich manipulation priors to enable efficient policy learning and better performance on diverse, complex manipulation tasks. Specifically, we predict hand-object contact points and detailed hand poses at the moment of hand-object contact and use the learned features to train policies for downstream manipulation tasks. Experimental results demonstrate the effectiveness of MAPLE across existing simulation benchmarks, as well as a newly designed set of challenging simulation tasks, which require fine-grained object control and complex dexterous skills. The benefits of MAPLE are further highlighted in real-world experiments using a dexterous robotic hand, whereas simultaneous evaluation across both simulation and real-world experiments has remained underexplored in prior work.
Abstract:In recent years, miniature wall-climbing robots have attracted widespread attention due to their significant potential in equipment inspection and in-situ repair applications. Traditional wall-climbing systems typically rely on electromagnetic, electrostatic, vacuum suction, or van der Waals forces for controllable adhesion. However, these conventional methods impose limitations when striving for both a compact design and high-speed mobility. This paper proposes a novel Vibration-Based Adhesion (VBA) technique, which utilizes a flexible disk vibrating near a surface to generate a strong and controllable attractive force without direct contact. By employing an electric motor as the vibration source, the constructed VBA system was experimentally evaluated, achieving an adhesion-to-weight ratio exceeding 51 times. The experimental results demonstrate that this adhesion mechanism not only provides a high normal force but also maintains minimal shear force, making it particularly suitable for high-speed movement and heavy load applications in miniature wall-climbing robots.
Abstract:Traditional diffusion models typically employ a U-Net architecture. Previous studies have unveiled the roles of attention blocks in the U-Net. However, they overlook the dynamic evolution of their importance during the inference process, which hinders their further exploitation to improve image applications. In this study, we first theoretically proved that, re-weighting the outputs of the Transformer blocks within the U-Net is a "free lunch" for improving the signal-to-noise ratio during the sampling process. Next, we proposed Importance Probe to uncover and quantify the dynamic shifts in importance of the Transformer blocks throughout the denoising process. Finally, we design an adaptive importance-based re-weighting schedule tailored to specific image generation and editing tasks. Experimental results demonstrate that, our approach significantly improves the efficiency of the inference process, and enhances the aesthetic quality of the samples with identity consistency. Our method can be seamlessly integrated into any U-Net-based architecture. Code: https://github.com/Hytidel/UNetReweighting
Abstract:Modern world models require costly and time-consuming collection of large video datasets with action demonstrations by people or by environment-specific agents. To simplify training, we focus on using many virtual environments for inexpensive, automatically collected interaction data. Genie, a recent multi-environment world model, demonstrates simulation abilities of many environments with shared behavior. Unfortunately, training their model requires expensive demonstrations. Therefore, we propose a training framework merely using a random agent in virtual environments. While the model trained in this manner exhibits good controls, it is limited by the random exploration possibilities. To address this limitation, we propose AutoExplore Agent - an exploration agent that entirely relies on the uncertainty of the world model, delivering diverse data from which it can learn the best. Our agent is fully independent of environment-specific rewards and thus adapts easily to new environments. With this approach, the pretrained multi-environment model can quickly adapt to new environments achieving video fidelity and controllability improvement. In order to obtain automatically large-scale interaction datasets for pretraining, we group environments with similar behavior and controls. To this end, we annotate the behavior and controls of 974 virtual environments - a dataset that we name RetroAct. For building our model, we first create an open implementation of Genie - GenieRedux and apply enhancements and adaptations in our version GenieRedux-G. Our code and data are available at https://github.com/insait-institute/GenieRedux.
Abstract:Electronic dictionaries have largely replaced paper dictionaries and become central tools for L2 learners seeking to expand their vocabulary. Users often assume these resources are reliable and rarely question the validity of the definitions provided. The accuracy of major E-dictionaries is seldom scrutinized, and little attention has been paid to how their corpora are constructed. Research on dictionary use, particularly the limitations of electronic dictionaries, remains scarce. This study adopts a combined method of experimentation, user survey, and dictionary critique to examine Youdao, one of the most widely used E-dictionaries in China. The experiment involved a translation task paired with retrospective reflection. Participants were asked to translate sentences containing words that are insufficiently or inaccurately defined in Youdao. Their consultation behavior was recorded to analyze how faulty definitions influenced comprehension. Results show that incomplete or misleading definitions can cause serious misunderstandings. Additionally, students exhibited problematic consultation habits. The study further explores how such flawed definitions originate, highlighting issues in data processing and the integration of AI and machine learning technologies in dictionary construction. The findings suggest a need for better training in dictionary literacy for users, as well as improvements in the underlying AI models used to build E-dictionaries.
Abstract:We introduce a novel task of generating realistic and diverse 3D hand trajectories given a single image of an object, which could be involved in a hand-object interaction scene or pictured by itself. When humans grasp an object, appropriate trajectories naturally form in our minds to use it for specific tasks. Hand-object interaction trajectory priors can greatly benefit applications in robotics, embodied AI, augmented reality and related fields. However, synthesizing realistic and appropriate hand trajectories given a single object or hand-object interaction image is a highly ambiguous task, requiring to correctly identify the object of interest and possibly even the correct interaction among many possible alternatives. To tackle this challenging problem, we propose the SIGHT-Fusion system, consisting of a curated pipeline for extracting visual features of hand-object interaction details from egocentric videos involving object manipulation, and a diffusion-based conditional motion generation model processing the extracted features. We train our method given video data with corresponding hand trajectory annotations, without supervision in the form of action labels. For the evaluation, we establish benchmarks utilizing the first-person FPHAB and HOI4D datasets, testing our method against various baselines and using multiple metrics. We also introduce task simulators for executing the generated hand trajectories and reporting task success rates as an additional metric. Experiments show that our method generates more appropriate and realistic hand trajectories than baselines and presents promising generalization capability on unseen objects. The accuracy of the generated hand trajectories is confirmed in a physics simulation setting, showcasing the authenticity of the created sequences and their applicability in downstream uses.
Abstract:Masked Diffusion Models (MDMs) have emerged as a powerful generative modeling technique. Despite their remarkable results, they typically suffer from slow inference with several steps. In this paper, we propose Di$\mathtt{[M]}$O, a novel approach that distills masked diffusion models into a one-step generator. Di$\mathtt{[M]}$O addresses two key challenges: (1) the intractability of using intermediate-step information for one-step generation, which we solve through token-level distribution matching that optimizes model output logits by an 'on-policy framework' with the help of an auxiliary model; and (2) the lack of entropy in the initial distribution, which we address through a token initialization strategy that injects randomness while maintaining similarity to teacher training distribution. We show Di$\mathtt{[M]}$O's effectiveness on both class-conditional and text-conditional image generation, impressively achieving performance competitive to multi-step teacher outputs while drastically reducing inference time. To our knowledge, we are the first to successfully achieve one-step distillation of masked diffusion models and the first to apply discrete distillation to text-to-image generation, opening new paths for efficient generative modeling.
Abstract:We introduce a novel framework for learning in neural networks by decomposing each neuron's weight vector into two distinct parts, $W_1$ and $W_2$, thereby modeling contrastive information directly at the neuron level. Traditional gradient descent stores both positive (target) and negative (non-target) feature information in a single weight vector, often obscuring fine-grained distinctions. Our approach, by contrast, maintains separate updates for target and non-target features, ultimately forming a single effective weight $W = W_1 - W_2$ that is more robust to noise and class imbalance. Experimental results on both regression (California Housing, Wine Quality) and classification (MNIST, Fashion-MNIST, CIFAR-10) tasks suggest that this decomposition enhances generalization and resists overfitting, especially when training data are sparse or noisy. Crucially, the inference complexity remains the same as in the standard $WX + \text{bias}$ setup, offering a practical solution for improved learning without additional inference-time overhead.
Abstract:Missing modalities pose a major issue in Alzheimer's Disease (AD) diagnosis, as many subjects lack full imaging data due to cost and clinical constraints. While multi-modal learning leverages complementary information, most existing methods train only on complete data, ignoring the large proportion of incomplete samples in real-world datasets like ADNI. This reduces the effective training set and limits the full use of valuable medical data. While some methods incorporate incomplete samples, they fail to effectively address inter-modal feature alignment and knowledge transfer challenges under high missing rates. To address this, we propose a Prototype-Guided Adaptive Distillation (PGAD) framework that directly incorporates incomplete multi-modal data into training. PGAD enhances missing modality representations through prototype matching and balances learning with a dynamic sampling strategy. We validate PGAD on the ADNI dataset with varying missing rates (20%, 50%, and 70%) and demonstrate that it significantly outperforms state-of-the-art approaches. Ablation studies confirm the effectiveness of prototype matching and adaptive sampling, highlighting the potential of our framework for robust and scalable AD diagnosis in real-world clinical settings.
Abstract:This paper introduces DeepCircuitX, a comprehensive repository-level dataset designed to advance RTL (Register Transfer Level) code understanding, generation, and power-performance-area (PPA) analysis. Unlike existing datasets that are limited to either file-level RTL code or physical layout data, DeepCircuitX provides a holistic, multilevel resource that spans repository, file, module, and block-level RTL code. This structure enables more nuanced training and evaluation of large language models (LLMs) for RTL-specific tasks. DeepCircuitX is enriched with Chain of Thought (CoT) annotations, offering detailed descriptions of functionality and structure at multiple levels. These annotations enhance its utility for a wide range of tasks, including RTL code understanding, generation, and completion. Additionally, the dataset includes synthesized netlists and PPA metrics, facilitating early-stage design exploration and enabling accurate PPA prediction directly from RTL code. We demonstrate the dataset's effectiveness on various LLMs finetuned with our dataset and confirm the quality with human evaluations. Our results highlight DeepCircuitX as a critical resource for advancing RTL-focused machine learning applications in hardware design automation.Our data is available at https://zeju.gitbook.io/lcm-team.