Abstract:This paper introduces a general classifier based on WavLM features, to infer demographic characteristics, such as age, gender, native language, education, and country, from speech. Demographic feature prediction plays a crucial role in applications like language learning, accessibility, and digital forensics, enabling more personalized and inclusive technologies. Leveraging pretrained models for embedding extraction, the proposed framework identifies key acoustic and linguistic fea-tures associated with demographic attributes, achieving a Mean Absolute Error (MAE) of 4.94 for age prediction and over 99.81% accuracy for gender classification across various datasets. Our system improves upon existing models by up to relative 30% in MAE and up to relative 10% in accuracy and F1 scores across tasks, leveraging a diverse range of datasets and large pretrained models to ensure robustness and generalizability. This study offers new insights into speaker diversity and provides a strong foundation for future research in speech-based demographic profiling.
Abstract:In this study, we explored the use of spectrograms to represent handwriting signals for assessing neurodegenerative diseases, including 42 healthy controls (CTL), 35 subjects with Parkinson's Disease (PD), 21 with Alzheimer's Disease (AD), and 15 with Parkinson's Disease Mimics (PDM). We applied CNN and CNN-BLSTM models for binary classification using both multi-channel fixed-size and frame-based spectrograms. Our results showed that handwriting tasks and spectrogram channel combinations significantly impacted classification performance. The highest F1-score (89.8%) was achieved for AD vs. CTL, while PD vs. CTL reached 74.5%, and PD vs. PDM scored 77.97%. CNN consistently outperformed CNN-BLSTM. Different sliding window lengths were tested for constructing frame-based spectrograms. A 1-second window worked best for AD, longer windows improved PD classification, and window length had little effect on PD vs. PDM.
Abstract:We introduce Condition-Aware Self-Supervised Learning Representation (CA-SSLR), a generalist conditioning model broadly applicable to various speech-processing tasks. Compared to standard fine-tuning methods that optimize for downstream models, CA-SSLR integrates language and speaker embeddings from earlier layers, making the SSL model aware of the current language and speaker context. This approach reduces the reliance on input audio features while preserving the integrity of the base SSLR. CA-SSLR improves the model's capabilities and demonstrates its generality on unseen tasks with minimal task-specific tuning. Our method employs linear modulation to dynamically adjust internal representations, enabling fine-grained adaptability without significantly altering the original model behavior. Experiments show that CA-SSLR reduces the number of trainable parameters, mitigates overfitting, and excels in under-resourced and unseen tasks. Specifically, CA-SSLR achieves a 10% relative reduction in LID errors, a 37% improvement in ASR CER on the ML-SUPERB benchmark, and a 27% decrease in SV EER on VoxCeleb-1, demonstrating its effectiveness.
Abstract:Poisoning backdoor attacks involve an adversary manipulating the training data to induce certain behaviors in the victim model by inserting a trigger in the signal at inference time. We adapted clean label backdoor (CLBD)-data poisoning attacks, which do not modify the training labels, on state-of-the-art speech recognition models that support/perform a Spoken Language Understanding task, achieving 99.8% attack success rate by poisoning 10% of the training data. We analyzed how varying the signal-strength of the poison, percent of samples poisoned, and choice of trigger impact the attack. We also found that CLBD attacks are most successful when applied to training samples that are inherently hard for a proxy model. Using this strategy, we achieved an attack success rate of 99.3% by poisoning a meager 1.5% of the training data. Finally, we applied two previously developed defenses against gradient-based attacks, and found that they attain mixed success against poisoning.
Abstract:In this paper, we introduce SoloAudio, a novel diffusion-based generative model for target sound extraction (TSE). Our approach trains latent diffusion models on audio, replacing the previous U-Net backbone with a skip-connected Transformer that operates on latent features. SoloAudio supports both audio-oriented and language-oriented TSE by utilizing a CLAP model as the feature extractor for target sounds. Furthermore, SoloAudio leverages synthetic audio generated by state-of-the-art text-to-audio models for training, demonstrating strong generalization to out-of-domain data and unseen sound events. We evaluate this approach on the FSD Kaggle 2018 mixture dataset and real data from AudioSet, where SoloAudio achieves the state-of-the-art results on both in-domain and out-of-domain data, and exhibits impressive zero-shot and few-shot capabilities. Source code and demos are released.
Abstract:In this paper, we introduce SSR-Speech, a neural codec autoregressive model designed for stable, safe, and robust zero-shot text-based speech editing and text-to-speech synthesis. SSR-Speech is built on a Transformer decoder and incorporates classifier-free guidance to enhance the stability of the generation process. A watermark Encodec is proposed to embed frame-level watermarks into the edited regions of the speech so that which parts were edited can be detected. In addition, the waveform reconstruction leverages the original unedited speech segments, providing superior recovery compared to the Encodec model. Our approach achieves the state-of-the-art performance in the RealEdit speech editing task and the LibriTTS text-to-speech task, surpassing previous methods. Furthermore, SSR-Speech excels in multi-span speech editing and also demonstrates remarkable robustness to background sounds. Source code and demos are released.
Abstract:Speech separation, the task of isolating multiple speech sources from a mixed audio signal, remains challenging in noisy environments. In this paper, we propose a generative correction method to enhance the output of a discriminative separator. By leveraging a generative corrector based on a diffusion model, we refine the separation process for single-channel mixture speech by removing noises and perceptually unnatural distortions. Furthermore, we optimize the generative model using a predictive loss to streamline the diffusion model's reverse process into a single step and rectify any associated errors by the reverse process. Our method achieves state-of-the-art performance on the in-domain Libri2Mix noisy dataset, and out-of-domain WSJ with a variety of noises, improving SI-SNR by 22-35% relative to SepFormer, demonstrating robustness and strong generalization capabilities.
Abstract:Adversarial examples have proven to threaten speaker identification systems, and several countermeasures against them have been proposed. In this paper, we propose a method to detect the presence of adversarial examples, i.e., a binary classifier distinguishing between benign and adversarial examples. We build upon and extend previous work on attack type classification by exploring new architectures. Additionally, we introduce a method for identifying the victim model on which the adversarial attack is carried out. To achieve this, we generate a new dataset containing multiple attacks performed against various victim models. We achieve an AUC of 0.982 for attack detection, with no more than a 0.03 drop in performance for unknown attacks. Our attack classification accuracy (excluding benign) reaches 86.48% across eight attack types using our LightResNet34 architecture, while our victim model classification accuracy reaches 72.28% across four victim models.
Abstract:Time series data is often composed of information at multiple time scales, particularly in biomedical data. While numerous deep learning strategies exist to capture this information, many make networks larger, require more data, are more demanding to compute, and are difficult to interpret. This limits their usefulness in real-world applications facing even modest computational or data constraints and can further complicate their translation into practice. We present a minimal, computationally efficient Time Scale Network combining the translation and dilation sequence used in discrete wavelet transforms with traditional convolutional neural networks and back-propagation. The network simultaneously learns features at many time scales for sequence classification with significantly reduced parameters and operations. We demonstrate advantages in Atrial Dysfunction detection including: superior accuracy-per-parameter and accuracy-per-operation, fast training and inference speeds, and visualization and interpretation of learned patterns in atrial dysfunction detection on ECG signals. We also demonstrate impressive performance in seizure prediction using EEG signals. Our network isolated a few time scales that could be strategically selected to achieve 90.9% accuracy using only 1,133 active parameters and consistently converged on pulsatile waveform shapes. This method does not rest on any constraints or assumptions regarding signal content and could be leveraged in any area of time series analysis dealing with signals containing features at many time scales.
Abstract:Common target sound extraction (TSE) approaches primarily relied on discriminative approaches in order to separate the target sound while minimizing interference from the unwanted sources, with varying success in separating the target from the background. This study introduces DPM-TSE, a first generative method based on diffusion probabilistic modeling (DPM) for target sound extraction, to achieve both cleaner target renderings as well as improved separability from unwanted sounds. The technique also tackles common background noise issues with DPM by introducing a correction method for noise schedules and sample steps. This approach is evaluated using both objective and subjective quality metrics on the FSD Kaggle 2018 dataset. The results show that DPM-TSE has a significant improvement in perceived quality in terms of target extraction and purity.