Abstract:This paper demonstrates that model-based reinforcement learning (model-based RL) is a suitable approach for the task of analogical reasoning. We hypothesize that model-based RL can solve analogical reasoning tasks more efficiently through the creation of internal models. To test this, we compared DreamerV3, a model-based RL method, with Proximal Policy Optimization, a model-free RL method, on the Abstraction and Reasoning Corpus (ARC) tasks. Our results indicate that model-based RL not only outperforms model-free RL in learning and generalizing from single tasks but also shows significant advantages in reasoning across similar tasks.
Abstract:In modern deep learning, the models are learned by applying gradient updates using an optimizer, which transforms the updates based on various statistics. Optimizers are often hand-designed and tuning their hyperparameters is a big part of the training process. Learned optimizers have shown some initial promise, but are generally unsuccessful as a general optimization mechanism applicable to every problem. In this work we explore a different direction: instead of learning general optimizers, we instead specialize them to a specific training environment. We propose a novel optimizer technique that learns a layer-specific linear combination of update directions provided by a set of base optimizers, effectively adapting its strategy to the specific model and dataset. When evaluated on image classification tasks, this specialized optimizer significantly outperforms both traditional off-the-shelf methods such as Adam, as well as existing general learned optimizers. Moreover, it demonstrates robust generalization with respect to model initialization, evaluating on unseen datasets, and training durations beyond its meta-training horizon.
Abstract:This paper introduces ARCLE, an environment designed to facilitate reinforcement learning research on the Abstraction and Reasoning Corpus (ARC). Addressing this inductive reasoning benchmark with reinforcement learning presents these challenges: a vast action space, a hard-to-reach goal, and a variety of tasks. We demonstrate that an agent with proximal policy optimization can learn individual tasks through ARCLE. The adoption of non-factorial policies and auxiliary losses led to performance enhancements, effectively mitigating issues associated with action spaces and goal attainment. Based on these insights, we propose several research directions and motivations for using ARCLE, including MAML, GFlowNets, and World Models.
Abstract:Speech decoding from EEG signals is a challenging task, where brain activity is modeled to estimate salient characteristics of acoustic stimuli. We propose FESDE, a novel framework for Fully-End-to-end Speech Decoding from EEG signals. Our approach aims to directly reconstruct listened speech waveforms given EEG signals, where no intermediate acoustic feature processing step is required. The proposed method consists of an EEG module and a speech module along with a connector. The EEG module learns to better represent EEG signals, while the speech module generates speech waveforms from model representations. The connector learns to bridge the distributions of the latent spaces of EEG and speech. The proposed framework is both simple and efficient, by allowing single-step inference, and outperforms prior works on objective metrics. A fine-grained phoneme analysis is conducted to unveil model characteristics of speech decoding. The source code is available here: github.com/lee-jhwn/fesde.
Abstract:With the recent developments in cross-lingual Text-to-Speech (TTS) systems, L2 (second-language, or foreign) accent problems arise. Moreover, running a subjective evaluation for such cross-lingual TTS systems is troublesome. The vowel space analysis, which is often utilized to explore various aspects of language including L2 accents, is a great alternative analysis tool. In this study, we apply the vowel space analysis method to explore L2 accents of cross-lingual TTS systems. Through the vowel space analysis, we observe the three followings: a) a parallel architecture (Glow-TTS) is less L2-accented than an auto-regressive one (Tacotron); b) L2 accents are more dominant in non-shared vowels in a language pair; and c) L2 accents of cross-lingual TTS systems share some phenomena with those of human L2 learners. Our findings imply that it is necessary for TTS systems to handle each language pair differently, depending on their linguistic characteristics such as non-shared vowels. They also hint that we can further incorporate linguistics knowledge in developing cross-lingual TTS systems.
Abstract:Intonations take an important role in delivering the intention of the speaker. However, current end-to-end TTS systems often fail to model proper intonations. To alleviate this problem, we propose a novel, intuitive method to synthesize speech in different intonations using predefined intonation templates. Prior to the acoustic model training, speech data are automatically grouped into intonation templates by k-means clustering, according to their sentence-final F0 contour. Two proposed modules are added to the end-to-end TTS framework: intonation classifier and intonation encoder. The intonation classifier recommends a suitable intonation template to the given text. The intonation encoder, attached to the text encoder output, synthesizes speech abiding the requested intonation template. Main contributions of our paper are: (a) an easy-to-use intonation control system covering a wide range of users; (b) better performance in wrapping speech in a requested intonation with improved pitch distance and MOS; and (c) feasibility to future integration between TTS and NLP, TTS being able to utilize contextual information. Audio samples are available at https://srtts.github.io/IntoTTS.
Abstract:In this paper, we introduce an approach for leveraging available data across multiple locales sharing the same language to 1) improve domain classification model accuracy in Spoken Language Understanding and user experience even if new locales do not have sufficient data and 2) reduce the cost of scaling the domain classifier to a large number of locales. We propose a locale-agnostic universal domain classification model based on selective multi-task learning that learns a joint representation of an utterance over locales with different sets of domains and allows locales to share knowledge selectively depending on the domains. The experimental results demonstrate the effectiveness of our approach on domain classification task in the scenario of multiple locales with imbalanced data and disparate domain sets. The proposed approach outperforms other baselines models especially when classifying locale-specific domains and also low-resourced domains.
Abstract:Domain classification is the task of mapping spoken language utterances to one of the natural language understanding domains in intelligent personal digital assistants (IPDAs). This is a major component in mainstream IPDAs in industry. Apart from official domains, thousands of third-party domains are also created by external developers to enhance the capability of IPDAs. As more domains are developed rapidly, the question of how to continuously accommodate the new domains still remains challenging. Moreover, existing continual learning approaches do not address the problem of incorporating personalized information dynamically for better domain classification. In this paper, we propose CoNDA, a neural network based approach for domain classification that supports incremental learning of new classes. Empirical evaluation shows that CoNDA achieves high accuracy and outperforms baselines by a large margin on both incrementally added new domains and existing domains.