Abstract:Coffee leaf rust, a foliar disease caused by the fungus Hemileia vastatrix, poses a major threat to coffee production, especially in Central America. Climate change further aggravates this issue, as it shortens the latency period between initial infection and the emergence of visible symptoms in diseases like leaf rust. Shortened latency periods can lead to more severe plant epidemics and faster spread of diseases. There is, hence, an urgent need for effective disease management strategies. To address these challenges, we explore the potential of deep learning models for enhancing early disease detection. However, deep learning models require extensive processing power and large amounts of data for model training, resources that are typically scarce. To overcome these barriers, we propose a preprocessing technique that involves convolving training images with a high-pass filter to enhance lesion-leaf contrast, significantly improving model efficacy in resource-limited environments. This method and our model demonstrated a strong performance, achieving over 90% across all evaluation metrics--including precision, recall, F1-score, and the Dice coefficient. Our experiments show that this approach outperforms other methods, including two different image preprocessing techniques and using unaltered, full-color images.
Abstract:Speech decoding from EEG signals is a challenging task, where brain activity is modeled to estimate salient characteristics of acoustic stimuli. We propose FESDE, a novel framework for Fully-End-to-end Speech Decoding from EEG signals. Our approach aims to directly reconstruct listened speech waveforms given EEG signals, where no intermediate acoustic feature processing step is required. The proposed method consists of an EEG module and a speech module along with a connector. The EEG module learns to better represent EEG signals, while the speech module generates speech waveforms from model representations. The connector learns to bridge the distributions of the latent spaces of EEG and speech. The proposed framework is both simple and efficient, by allowing single-step inference, and outperforms prior works on objective metrics. A fine-grained phoneme analysis is conducted to unveil model characteristics of speech decoding. The source code is available here: github.com/lee-jhwn/fesde.
Abstract:A wide range of neurological and cognitive disorders exhibit distinct behavioral markers aside from their clinical manifestations. Cortical Visual Impairment (CVI) is a prime example of such conditions, resulting from damage to visual pathways in the brain, and adversely impacting low- and high-level visual function. The characteristics impacted by CVI are primarily described qualitatively, challenging the establishment of an objective, evidence-based measure of CVI severity. To study those characteristics, we propose to create visual saliency maps by adequately prompting deep vision models with attributes of clinical interest. After extracting saliency maps for a curated set of stimuli, we evaluate fixation traces on those from children with CVI through eye tracking technology. Our experiments reveal significant gaze markers that verify clinical knowledge and yield nuanced discriminability when compared to those of age-matched control subjects. Using deep learning to unveil atypical visual saliency is an important step toward establishing an eye-tracking signature for severe neurodevelopmental disorders, like CVI.
Abstract:Ubiquitous sensing from wearable devices in the wild holds promise for enhancing human well-being, from diagnosing clinical conditions and measuring stress to building adaptive health promoting scaffolds. But the large volumes of data therein across heterogeneous contexts pose challenges for conventional supervised learning approaches. Representation Learning from biological signals is an emerging realm catalyzed by the recent advances in computational modeling and the abundance of publicly shared databases. The electrocardiogram (ECG) is the primary researched modality in this context, with applications in health monitoring, stress and affect estimation. Yet, most studies are limited by small-scale controlled data collection and over-parameterized architecture choices. We introduce \textbf{WildECG}, a pre-trained state-space model for representation learning from ECG signals. We train this model in a self-supervised manner with 275,000 10s ECG recordings collected in the wild and evaluate it on a range of downstream tasks. The proposed model is a robust backbone for ECG analysis, providing competitive performance on most of the tasks considered, while demonstrating efficacy in low-resource regimes. The code and pre-trained weights are shared publicly at https://github.com/klean2050/tiles_ecg_model.
Abstract:Traditional music search engines rely on retrieval methods that match natural language queries with music metadata. There have been increasing efforts to expand retrieval methods to consider the audio characteristics of music itself, using queries of various modalities including text, video, and speech. Most approaches aim to match general music semantics to the input queries, while only a few focus on affective qualities. We address the task of retrieving emotionally-relevant music from image queries by proposing a framework for learning an affective alignment between images and music audio. Our approach focuses on learning an emotion-aligned joint embedding space between images and music. This joint embedding space is learned via emotion-supervised contrastive learning, using an adapted cross-modal version of the SupCon loss. We directly evaluate the joint embeddings with cross-modal retrieval tasks (image-to-music and music-to-image) based on emotion labels. In addition, we investigate the generalizability of the learned music embeddings with automatic music tagging as a downstream task. Our experiments show that our approach successfully aligns images and music, and that the learned embedding space is effective for cross-modal retrieval applications.
Abstract:This paper presents the approach and results of USC SAIL's submission to the Signal Processing Grand Challenge 2023 - e-Prevention (Task 2), on detecting relapses in psychotic patients. Relapse prediction has proven to be challenging, primarily due to the heterogeneity of symptoms and responses to treatment between individuals. We address these challenges by investigating the use of sleep behavior features to estimate relapse days as outliers in an unsupervised machine learning setting. We extract informative features from human activity and heart rate data collected in the wild, and evaluate various combinations of feature types and time resolutions. We found that short-time sleep behavior features outperformed their awake counterparts and larger time intervals. Our submission was ranked 3rd in the Task's official leaderboard, demonstrating the potential of such features as an objective and non-invasive predictor of psychotic relapses.
Abstract:Detecting unsafe driving states, such as stress, drowsiness, and fatigue, is an important component of ensuring driving safety and an essential prerequisite for automatic intervention systems in vehicles. These concerning conditions are primarily connected to the driver's low or high arousal levels. In this study, we describe a framework for processing multimodal physiological time-series from wearable sensors during driving and locating points of prominent change in drivers' physiological arousal state. These points of change could potentially indicate events that require just-in-time intervention. We apply time-series segmentation on heart rate and breathing rate measurements and quantify their robustness in capturing change points in electrodermal activity, treated as a reference index for arousal, as well as on self-reported stress ratings, using three public datasets. Our experiments demonstrate that physiological measures are veritable indicators of change points of arousal and perform robustly across an extensive ablation study.
Abstract:Human perception and experience of music is highly context-dependent. Contextual variability contributes to differences in how we interpret and interact with music, challenging the design of robust models for information retrieval. Incorporating multimodal context from diverse sources provides a promising approach toward modeling this variability. Music presented in media such as movies and music videos provide rich multimodal context that modulates underlying human experiences. However, such context modeling is underexplored, as it requires large amounts of multimodal data along with relevant annotations. Self-supervised learning can help address these challenges by automatically extracting rich, high-level correspondences between different modalities, hence alleviating the need for fine-grained annotations at scale. In this study, we propose VCMR -- Video-Conditioned Music Representations, a contrastive learning framework that learns music representations from audio and the accompanying music videos. The contextual visual information enhances representations of music audio, as evaluated on the downstream task of music tagging. Experimental results show that the proposed framework can contribute additive robustness to audio representations and indicates to what extent musical elements are affected or determined by visual context.
Abstract:Papilledema is an ophthalmic neurologic disorder in which increased intracranial pressure leads to swelling of the optic nerves. Undiagnosed papilledema in children may lead to blindness and may be a sign of life-threatening conditions, such as brain tumors. Robust and accurate clinical diagnosis of this syndrome can be facilitated by automated analysis of fundus images using deep learning, especially in the presence of challenges posed by pseudopapilledema that has similar fundus appearance but distinct clinical implications. We present a deep learning-based algorithm for the automatic detection of pediatric papilledema. Our approach is based on optic disc localization and detection of explainable papilledema indicators through data augmentation. Experiments on real-world clinical data demonstrate that our proposed method is effective with a diagnostic accuracy comparable to expert ophthalmologists.
Abstract:The study of Music Cognition and neural responses to music has been invaluable in understanding human emotions. Brain signals, though, manifest a highly complex structure that makes processing and retrieving meaningful features challenging, particularly of abstract constructs like affect. Moreover, the performance of learning models is undermined by the limited amount of available neuronal data and their severe inter-subject variability. In this paper we extract efficient, personalized affective representations from EEG signals during music listening. To this end, we employ music signals as a supervisory modality to EEG, aiming to project their semantic correspondence onto a common representation space. We utilize a bi-modal framework by combining an LSTM-based attention model to process EEG and a pre-trained model for music tagging, along with a reverse domain discriminator to align the distributions of the two modalities, further constraining the learning process with emotion tags. The resulting framework can be utilized for emotion recognition both directly, by performing supervised predictions from either modality, and indirectly, by providing relevant music samples to EEG input queries. The experimental findings show the potential of enhancing neuronal data through stimulus information for recognition purposes and yield insights into the distribution and temporal variance of music-induced affective features.