Abstract:Ubiquitous sensing from wearable devices in the wild holds promise for enhancing human well-being, from diagnosing clinical conditions and measuring stress to building adaptive health promoting scaffolds. But the large volumes of data therein across heterogeneous contexts pose challenges for conventional supervised learning approaches. Representation Learning from biological signals is an emerging realm catalyzed by the recent advances in computational modeling and the abundance of publicly shared databases. The electrocardiogram (ECG) is the primary researched modality in this context, with applications in health monitoring, stress and affect estimation. Yet, most studies are limited by small-scale controlled data collection and over-parameterized architecture choices. We introduce \textbf{WildECG}, a pre-trained state-space model for representation learning from ECG signals. We train this model in a self-supervised manner with 275,000 10s ECG recordings collected in the wild and evaluate it on a range of downstream tasks. The proposed model is a robust backbone for ECG analysis, providing competitive performance on most of the tasks considered, while demonstrating efficacy in low-resource regimes. The code and pre-trained weights are shared publicly at https://github.com/klean2050/tiles_ecg_model.
Abstract:This paper presents the approach and results of USC SAIL's submission to the Signal Processing Grand Challenge 2023 - e-Prevention (Task 2), on detecting relapses in psychotic patients. Relapse prediction has proven to be challenging, primarily due to the heterogeneity of symptoms and responses to treatment between individuals. We address these challenges by investigating the use of sleep behavior features to estimate relapse days as outliers in an unsupervised machine learning setting. We extract informative features from human activity and heart rate data collected in the wild, and evaluate various combinations of feature types and time resolutions. We found that short-time sleep behavior features outperformed their awake counterparts and larger time intervals. Our submission was ranked 3rd in the Task's official leaderboard, demonstrating the potential of such features as an objective and non-invasive predictor of psychotic relapses.