Abstract:In the realm of medical imaging, leveraging large-scale datasets from various institutions is crucial for developing precise deep learning models, yet privacy concerns frequently impede data sharing. federated learning (FL) emerges as a prominent solution for preserving privacy while facilitating collaborative learning. However, its application in real-world scenarios faces several obstacles, such as task & data heterogeneity, label scarcity, non-identically distributed (non-IID) data, computational vaiation, etc. In real-world, medical institutions may not want to disclose their tasks to FL server and generalization challenge of out-of-network institutions with un-seen task want to join the on-going federated system. This study address task-agnostic and generalization problem on un-seen tasks by adapting self-supervised FL framework. Utilizing Vision Transformer (ViT) as consensus feature encoder for self-supervised pre-training, no initial labels required, the framework enabling effective representation learning across diverse datasets and tasks. Our extensive evaluations, using various real-world non-IID medical imaging datasets, validate our approach's efficacy, retaining 90\% of F1 accuracy with only 5\% of the training data typically required for centralized approaches and exhibiting superior adaptability to out-of-distribution task. The result indicate that federated learning architecture can be a potential approach toward multi-task foundation modeling.
Abstract:Understanding the severity of conditions shown in images in medical diagnosis is crucial, serving as a key guide for clinical assessment, treatment, as well as evaluating longitudinal progression. This paper proposes Con- PrO: a novel representation learning method for severity assessment in medical images using Contrastive learningintegrated Preference Optimization. Different from conventional contrastive learning methods that maximize the distance between classes, ConPrO injects into the latent vector the distance preference knowledge between various severity classes and the normal class. We systematically examine the key components of our framework to illuminate how contrastive prediction tasks acquire valuable representations. We show that our representation learning framework offers valuable severity ordering in the feature space while outperforming previous state-of-the-art methods on classification tasks. We achieve a 6% and 20% relative improvement compared to a supervised and a self-supervised baseline, respectively. In addition, we derived discussions on severity indicators and related applications of preference comparison in the medical domain.
Abstract:Primary open-angle glaucoma (POAG) is a chronic and progressive optic nerve condition that results in an acquired loss of optic nerve fibers and potential blindness. The gradual onset of glaucoma results in patients progressively losing their vision without being consciously aware of the changes. To diagnose POAG and determine its severity, patients must undergo a comprehensive dilated eye examination. In this work, we build a framework to rank, compare, and interpret the severity of glaucoma using fundus images. We introduce a siamese-based severity ranking using pairwise n-hidden comparisons. We additionally have a novel approach to explaining why a specific image is deemed more severe than others. Our findings indicate that the proposed severity ranking model surpasses traditional ones in terms of diagnostic accuracy and delivers improved saliency explanations.