Abstract:Reliable traffic data are essential for understanding urban mobility and developing effective traffic management strategies. This study introduces the DRone-derived Intelligence For Traffic analysis (DRIFT) dataset, a large-scale urban traffic dataset collected systematically from synchronized drone videos at approximately 250 meters altitude, covering nine interconnected intersections in Daejeon, South Korea. DRIFT provides high-resolution vehicle trajectories that include directional information, processed through video synchronization and orthomap alignment, resulting in a comprehensive dataset of 81,699 vehicle trajectories. Through our DRIFT dataset, researchers can simultaneously analyze traffic at multiple scales - from individual vehicle maneuvers like lane-changes and safety metrics such as time-to-collision to aggregate network flow dynamics across interconnected urban intersections. The DRIFT dataset is structured to enable immediate use without additional preprocessing, complemented by open-source models for object detection and trajectory extraction, as well as associated analytical tools. DRIFT is expected to significantly contribute to academic research and practical applications, such as traffic flow analysis and simulation studies. The dataset and related resources are publicly accessible at https://github.com/AIxMobility/The-DRIFT.
Abstract:In the pursuit of artificial general intelligence (AGI), we tackle Abstraction and Reasoning Corpus (ARC) tasks using a novel two-pronged approach. We employ the Decision Transformer in an imitation learning paradigm to model human problem-solving, and introduce an object detection algorithm, the Push and Pull clustering method. This dual strategy enhances AI's ARC problem-solving skills and provides insights for AGI progression. Yet, our work reveals the need for advanced data collection tools, robust training datasets, and refined model structures. This study highlights potential improvements for Decision Transformers and propels future AGI research.