Abstract:This paper aims to prove the significant superiority of hybrid non-orthogonal multiple access (NOMA) over orthog onal multiple access (OMA) in terms of energy efficiency. In particular, a novel hybrid NOMA scheme is proposed in which a user can transmit signals not only by using its own time slot but also by using the time slots of other users. The data rate maximization problem is studied by optimizing the power allocation, where closed-form solutions are obtained. Further more, the conditions under which hybrid NOMA can achieve a higher instantaneous data rate with less power consumption than OMA are obtained. It is proved that the probability that hybrid NOMA can achieve a higher instantaneous data rate with less power consumption than OMA approaches one in the high SNR regime, indicating the superiority of hybrid NOMA in terms of power efficiency. Numerical results are also provided to verify the developed analysis and also to demonstrate the superior performance of hybrid NOMA.
Abstract:Reconfigurable holographic surfaces (RHSs) constitute a promising technique of supporting energy-efficient communications. In this paper, we formulate the energy efficiency maximization problem of the switch-controlled RHS-aided beamforming architecture by alternately optimizing the holographic beamformer at the RHS, the digital beamformer, the total transmit power and the power sharing ratio of each user. Specifically, to deal with this challenging non-convex optimization problem, we decouple it into three sub-problems. Firstly, the coefficients of RHS elements responsible for the holographic beamformer are optimized to maximize the sum of the eigen-channel gains of all users by our proposed low-complexity eigen-decomposition (ED) method. Then, the digital beamformer is designed by the singular value decomposition (SVD) method to support multi-user information transfer. Finally, the total transmit power and the power sharing ratio are alternately optimized, while considering the effect of transceiver hardware impairments (HWI). We theoretically derive the spectral efficiency and energy efficiency performance upper bound for the RHS-based beamforming architectures in the presence of HWIs. Our simulation results show that the switch-controlled RHS-aided beamforming architecture achieves higher energy efficiency than the conventional fully digital beamformer and the hybrid beamformer based on phase shift arrays (PSA). Moreover, considering the effect of HWI in the beamforming design can bring about further energy efficiency enhancements.
Abstract:An intelligent omni-surface (IOS) assisted holographic multiple-input and multiple-output architecture is conceived for $360^\circ$ full-space coverage at a low energy consumption. The theoretical ergodic rate lower bound of our non-orthogonal multiple access (NOMA) scheme is derived based on the moment matching approximation method, while considering the signal distortion at transceivers imposed by hardware impairments (HWIs). Furthermore, the asymptotically ergodic rate lower bound is derived both for an infinite number of IOS elements and for continuous aperture surfaces. Both the theoretical analysis and the simulation results show that the achievable rate of the NOMA scheme is higher than that of its orthogonal multiple access counterpart. Furthermore, owing to the HWIs at the transceivers, the achievable rate saturates at high signal-to-noise ratio region, instead of reaching its theoretical maximum.
Abstract:This paper studies the application of cognitive radio inspired non-orthogonal multiple access (CR-NOMA) to reduce age of information (AoI) for uplink transmission. In particular, a time division multiple access (TDMA) based legacy network is considered, where each user is allocated with a dedicated time slot to transmit its status update information. The CR-NOMA is implemented as an add-on to the TDMA legacy network, which enables each user to have more opportunities to transmit by sharing other user's time slots. A rigorous analytical framework is developed to obtain the expressions for AoIs achieved by CR-NOMA with and without re-transmission, by taking the randomness of the status update generating process into consideration. Numerical results are presented to verify the accuracy of the developed analysis. It is shown that the AoI can be significantly reduced by applying CR-NOMA compared to TDMA. Moreover, the use of re-transmission is helpful to reduce AoI, especially when the status arrival rate is low.
Abstract:Recently, stochastic geometry has been applied to provide tractable performance analysis for low earth orbit (LEO) satellite networks. However, existing works mainly focus on analyzing the ``coverage probability'', which provides limited information. To provide more insights, this paper provides a more fine grained analysis on LEO satellite networks modeled by a homogeneous Poisson point process (HPPP). Specifically, the distribution and moments of the conditional coverage probability given the point process are studied. The developed analytical results can provide characterizations on LEO satellite networks, which are not available in existing literature, such as ``user fairness'' and ``what fraction of users can achieve a given transmission reliability ''. Simulation results are provided to verify the developed analysis. Numerical results show that, in a dense satellite network, {\color{black}it is} beneficial to deploy satellites at low altitude, for the sake of both coverage probability and user fairness.
Abstract:Reconfigurable intelligent surfaces (RIS) are capable of beneficially ameliorating the propagation environment by appropriately controlling the passive reflecting elements. To extend the coverage area, the concept of simultaneous transmitting and reflecting reconfigurable intelligent surfaces (STAR-RIS) has been proposed, yielding supporting 360^circ coverage user equipment (UE) located on both sides of the RIS. In this paper, we theoretically formulate the ergodic sum-rate of the STAR-RIS assisted non-orthogonal multiple access (NOMA) uplink in the face of channel estimation errors and hardware impairments (HWI). Specifically, the STAR-RIS phase shift is configured based on the statistical channel state information (CSI), followed by linear minimum mean square error (LMMSE) channel estimation of the equivalent channel spanning from the UEs to the access point (AP). Afterwards, successive interference cancellation (SIC) is employed at the AP using the estimated instantaneous CSI, and we derive the theoretical ergodic sum-rate upper bound for both perfect and imperfect SIC decoding algorithm. The theoretical analysis and the simulation results show that both the channel estimation and the ergodic sum-rate have performance floor at high transmit power region caused by transceiver hardware impairments.