Abstract:Fluid antenna system (FAS) as a new version of reconfigurable antenna technologies promoting shape and position flexibility, has emerged as an exciting and possibly transformative technology for wireless communications systems. FAS represents any software-controlled fluidic, conductive or dielectric structure that can dynamically alter antenna's shape and position to change the gain, the radiation pattern, the operating frequency, and other critical radiation characteristics. With its capability, it is highly anticipated that FAS can contribute greatly to the upcoming sixth generation (6G) wireless networks. This article substantiates this thought by addressing four major questions: 1) Is FAS crucial to 6G? 2) How to characterize FAS? 3) What are the applications of FAS? 4) What are the relevant challenges and future research directions? In particular, five promising research directions that underscore the potential of FAS are discussed. We conclude this article by showcasing the impressive performance of FAS.
Abstract:Flexible-antenna systems have recently received significant research interest due to their capability to reconfigure wireless channels intelligently. This paper focuses on a new type of flexible-antenna technology, termed pinching antennas, which can be realized by applying small dielectric particles on a waveguide. Analytical results are first developed for the simple case with a single pinching antenna and a single waveguide, where the unique feature of the pinching-antenna system to create strong line-of-sight links and mitigate large-scale path loss is demonstrated. An advantageous feature of pinching-antenna systems is that multiple pinching antennas can be activated on a single waveguide at no extra cost; however, they must be fed with the same signal. This feature motivates the application of non-orthogonal multiple access (NOMA), and analytical results are provided to demonstrate the superior performance of NOMA-assisted pinching-antenna systems. Finally, the case with multiple pinching antennas and multiple waveguides is studied, which resembles a classical multiple-input single-input (MISO) interference channel. By exploiting the capability of pinching antennas to reconfigure the wireless channel, it is revealed that a performance upper bound on the interference channel becomes achievable, where the achievability conditions are also identified. Computer simulation results are presented to verify the developed analytical results and demonstrate the superior performance of pinching-antenna systems.
Abstract:In this paper, a novel continuous-aperture array (CAPA)-based wireless communication architecture is proposed, which relies on an electrically large aperture with a continuous current distribution. First, an existing prototype of CAPA is reviewed, followed by the potential benefits and key motivations for employing CAPAs in wireless communications. Then, three practical hardware implementation approaches for CAPAs are introduced based on electronic, optical, and acoustic materials. Furthermore, several beamforming approaches are proposed to optimize the continuous current distributions of CAPAs, which are fundamentally different from those used for conventional spatially discrete arrays (SPDAs). Numerical results are provided to demonstrate their key features in low complexity and near-optimality. Based on these proposed approaches, the performance gains of CAPAs over SPDAs are revealed in terms of channel capacity as well as diversity-multiplexing gains. Finally, several open research problems in CAPA are highlighted.
Abstract:This paper aims to prove the significant superiority of hybrid non-orthogonal multiple access (NOMA) over orthog onal multiple access (OMA) in terms of energy efficiency. In particular, a novel hybrid NOMA scheme is proposed in which a user can transmit signals not only by using its own time slot but also by using the time slots of other users. The data rate maximization problem is studied by optimizing the power allocation, where closed-form solutions are obtained. Further more, the conditions under which hybrid NOMA can achieve a higher instantaneous data rate with less power consumption than OMA are obtained. It is proved that the probability that hybrid NOMA can achieve a higher instantaneous data rate with less power consumption than OMA approaches one in the high SNR regime, indicating the superiority of hybrid NOMA in terms of power efficiency. Numerical results are also provided to verify the developed analysis and also to demonstrate the superior performance of hybrid NOMA.
Abstract:In this paper, we conduct a theoretical analysis of how to integrate reconfigurable intelligent surfaces (RIS) with cooperative non-orthogonal multiple access (NOMA), considering URLLC. We consider a downlink two-user cooperative NOMA system employing short-packet communications, where the two users are denoted by the central user (CU) and the cell-edge user (CEU), respectively, and an RIS is deployed to enhance signal quality. Specifically, compared to CEU, CU lies nearer from BS and enjoys the higher channel gains. Closed-form expressions for the CU's average block error rate (BLER) are derived. Furthermore, we evaluate the CEU's BLER performance utilizing selective combining (SC) and derive a tight lower bound under maximum ratio combining (MRC). Simulation results are provided to our analyses and demonstrate that the RIS-assisted system significantly outperforms its counterpart without RIS in terms of BLER. Notably, MRC achieves a squared multiple of the diversity gain of the SC, leading to more reliable performance, especially for the CEU. Furthermore, by dividing the RIS into two zones, each dedicated to a specific user, the average BLER can be further reduced, particularly for the CEU.
Abstract:This paper investigates deep learning enabled beamforming design for ultra-dense wireless networks by integrating prior knowledge and graph neural network (GNN), named model-based GNN. A energy efficiency (EE) maximization problem is formulated subject to power budget and quality of service (QoS) requirements, which is reformulated based on the minimum mean square error scheme and the hybrid zero-forcing and maximum ratio transmission schemes. Based on the reformulated problem, the model-based GNN to realize the mapping from channel state information to beamforming vectors. Particular, the multi-head attention mechanism and residual connection are adopted to enhance the feature extracting, and a scheme selection module is designed to improve the adaptability of GNN. The unsupervised learning is adopted, and a various-input training strategy is proposed to enhance the stability of GNN. Numerical results demonstrate the millisecond-level response with limited performance loss, the scalability to different users and the adaptability to various channel conditions and QoS requirements of the model-based GNN in ultra-dense wireless networks.
Abstract:Hybrid non-orthogonal multiple access (NOMA) has recently received significant research interest due to its ability to efficiently use resources from different domains and also its compatibility with various orthogonal multiple access (OMA) based legacy networks. Unlike existing studies on hybrid NOMA that focus on combining NOMA with time-division multiple access (TDMA), this work considers hybrid NOMA assisted orthogonal frequency-division multiple access (OFDMA). In particular, the impact of a unique feature of hybrid NOMA assisted OFDMA, i.e., the availability of users' dynamic channel state information, on the system performance is analyzed from the following two perspectives. From the optimization perspective, analytical results are developed which show that with hybrid NOMA assisted OFDMA, the pure OMA mode is rarely adopted by the users, and the pure NOMA mode could be optimal for minimizing the users' energy consumption, which differs from the hybrid TDMA case. From the statistical perspective, two new performance metrics, namely the power outage probability and the power diversity gain, are developed to quantitatively measure the performance gain of hybrid NOMA over OMA. The developed analytical results also demonstrate the ability of hybrid NOMA to meet the users' diverse energy profiles.
Abstract:This paper investigates federated learning in a wireless communication system, where random device selection is employed with non-independent and identically distributed (non-IID) data. The analysis indicates that while training deep learning networks using federated stochastic gradient descent (FedSGD) on non-IID datasets, device selection can generate gradient errors that accumulate, leading to potential weight divergence. To mitigate training divergence, we design an age-weighted FedSGD to scale local gradients according to the previous state of devices. To further improve learning performance by increasing device participation under the maximum time consumption constraint, we formulate an energy consumption minimization problem by including resource allocation and sub-channel assignment. By transforming the resource allocation problem into convex and utilizing KKT conditions, we derived the optimal resource allocation solution. Moreover, this paper develops a matching based algorithm to generate the enhanced sub-channel assignment. Simulation results indicate that i) age-weighted FedSGD is able to outperform conventional FedSGD in terms of convergence rate and achievable accuracy, and ii) the proposed resource allocation and sub-channel assignment strategies can significantly reduce energy consumption and improve learning performance by increasing the number of selected devices.
Abstract:A fundamental objective of the forthcoming sixth-generation wireless networks is to concurrently serve a vast array of devices many of which, such as Internet-of-Things (IoT) sensors, are projected to have low power requirements or even operate in a battery-free manner. To achieve this goal, non-orthogonal multiple access (NOMA) and ambient backscatter communications (AmBC) are regarded as two pivotal and promising technologies. In this work, we present a novel analytical framework for studying the reliability and security of uplink NOMA-based AmBC systems. Specifically, closed-form analytical expressions for both NOMA-users' and IoT backscatter device's (BD's) outage probabilities (OPs) are derived for both cases of perfect and imperfect successive interference cancellation (SIC). In addition, assuming that one NOMA-user transmits an artificial noise in order to enhance system's security, the physical layer security (PLS) of the system is investigated by extracting analytical expressions for NOMA-users' and BD's intercept probabilities (IPs). To gain insightful understandings, an asymptotic analysis is carried out by focusing on the high signal-to-noise (SNR) regime, which reveals that NOMA-users and BDs face outage floors in the high SNR regime as well as that IPs reach constant values at high SNR. Additionally, practical insights regarding how different system parameters affect these OP floors and IP constant values are extracted. Numerical results verify the accuracy of othe developed theoretical framework, offer performance comparisons between the presented NOMA-based AmBC system and a conventional orthogonal multiple access-based AmBC system, and reveal the impact of different system parameters on the reliability and security of NOMA-based AmBC networks.
Abstract:Multiple access techniques are fundamental to the design of wireless communication systems, since many crucial components of such systems depend on the choice of the multiple access technique. Because of the importance of multiple access, there has been an ongoing quest during the past decade to develop next generation multiple access (NGMA). Among those potential candidates for NGMA, non-orthogonal multiple access (NOMA) has received significant attention from both the industrial and academic research communities, and has been highlighted in the recently published International Mobile Telecommunications (IMT)-2030 Framework. However, there is still no consensus in the research community about how exactly NOMA assisted NGMA should be designed. This perspective is to outline three important features of NOMA assisted NGMA, namely multi-domain utilization, multi-mode compatibility, and multi-dimensional optimality, where important directions for future research into the design of NOMA assisted NGMA are also discussed.