Abstract:In this work, we develop a specialized dataset aimed at enhancing the evaluation and fine-tuning of large language models (LLMs) specifically for wireless communication applications. The dataset includes a diverse set of multi-hop questions, including true/false and multiple-choice types, spanning varying difficulty levels from easy to hard. By utilizing advanced language models for entity extraction and question generation, rigorous data curation processes are employed to maintain high quality and relevance. Additionally, we introduce a Pointwise V-Information (PVI) based fine-tuning method, providing a detailed theoretical analysis and justification for its use in quantifying the information content of training data with 2.24\% and 1.31\% performance boost for different models compared to baselines, respectively. To demonstrate the effectiveness of the fine-tuned models with the proposed methodologies on practical tasks, we also consider different tasks, including summarizing optimization problems from technical papers and solving the mathematical problems related to non-orthogonal multiple access (NOMA), which are generated by using the proposed multi-agent framework. Simulation results show significant performance gain in summarization tasks with 20.9\% in the ROUGE-L metrics. We also study the scaling laws of fine-tuning LLMs and the challenges LLMs face in the field of wireless communications, offering insights into their adaptation to wireless communication tasks. This dataset and fine-tuning methodology aim to enhance the training and evaluation of LLMs, contributing to advancements in LLMs for wireless communication research and applications.
Abstract:In this letter, a non-orthogonal multiple access (NOMA) assisted downlink pinching-antenna system is investigated, where multiple pinching antennas can be activated at pre-configured positions along a dielectric waveguide to serve users via NOMA. In particular, the objective of this letter is to study at what locations and how many pinching antennas should be activated in order to maximize the system throughput. To this end, a sum rate maximization problem with antenna activation is formulated. With the help of matching theory, the formulated problem can be recast as a one-sided one-to-one matching, for which a low-complexity algorithm is developed. Simulation results indicate that the considered NOMA assisted pinching-antenna system can outperform conventional fixed-antenna systems in terms of sum rate, and the proposed matching based antenna activation algorithm yields a significant performance gain over the considered benchmarks.
Abstract:With strong expressive capabilities in Large Language Models(LLMs), generative models effectively capture sentiment structures and deep semantics, however, challenges remain in fine-grained sentiment classification across multi-lingual and complex contexts. To address this, we propose the Sentiment Cross-Lingual Recognition and Logic Framework (SentiXRL), which incorporates two modules,an emotion retrieval enhancement module to improve sentiment classification accuracy in complex contexts through historical dialogue and logical reasoning,and a self-circulating analysis negotiation mechanism (SANM)to facilitates autonomous decision-making within a single model for classification tasks.We have validated SentiXRL's superiority on multiple standard datasets, outperforming existing models on CPED and CH-SIMS,and achieving overall better performance on MELD,Emorynlp and IEMOCAP. Notably, we unified labels across several fine-grained sentiment annotation datasets and conducted category confusion experiments, revealing challenges and impacts of class imbalance in standard datasets.
Abstract:Recently, the application of diffusion models has facilitated the significant development of speech and audio generation. Nevertheless, the quality of samples generated by diffusion models still needs improvement. And the effectiveness of the method is accompanied by the extensive number of sampling steps, leading to an extended synthesis time necessary for generating high-quality audio. Previous Text-to-Audio (TTA) methods mostly used diffusion models in the latent space for audio generation. In this paper, we explore the integration of the Flow Matching (FM) model into the audio latent space for audio generation. The FM is an alternative simulation-free method that trains continuous normalization flows (CNF) based on regressing vector fields. We demonstrate that our model significantly enhances the quality of generated audio samples, achieving better performance than prior models. Moreover, it reduces the number of inference steps to ten steps almost without sacrificing performance.
Abstract:This paper investigates federated learning in a wireless communication system, where random device selection is employed with non-independent and identically distributed (non-IID) data. The analysis indicates that while training deep learning networks using federated stochastic gradient descent (FedSGD) on non-IID datasets, device selection can generate gradient errors that accumulate, leading to potential weight divergence. To mitigate training divergence, we design an age-weighted FedSGD to scale local gradients according to the previous state of devices. To further improve learning performance by increasing device participation under the maximum time consumption constraint, we formulate an energy consumption minimization problem by including resource allocation and sub-channel assignment. By transforming the resource allocation problem into convex and utilizing KKT conditions, we derived the optimal resource allocation solution. Moreover, this paper develops a matching based algorithm to generate the enhanced sub-channel assignment. Simulation results indicate that i) age-weighted FedSGD is able to outperform conventional FedSGD in terms of convergence rate and achievable accuracy, and ii) the proposed resource allocation and sub-channel assignment strategies can significantly reduce energy consumption and improve learning performance by increasing the number of selected devices.
Abstract:This study explores the benefits of integrating the novel clustered federated learning (CFL) approach with non-orthogonal multiple access (NOMA) under non-independent and identically distributed (non-IID) datasets, where multiple devices participate in the aggregation with time limitations and a finite number of sub-channels. A detailed theoretical analysis of the generalization gap that measures the degree of non-IID in the data distribution is presented. Following that, solutions to address the challenges posed by non-IID conditions are proposed with the analysis of the properties. Specifically, users' data distributions are parameterized as concentration parameters and grouped using spectral clustering, with Dirichlet distribution serving as the prior. The investigation into the generalization gap and convergence rate guides the design of sub-channel assignments through the matching-based algorithm, and the power allocation is achieved by Karush-Kuhn-Tucker (KKT) conditions with the derived closed-form solution. The extensive simulation results show that the proposed cluster-based FL framework can outperform FL baselines in terms of both test accuracy and convergence rate. Moreover, jointly optimizing sub-channel and power allocation in NOMA-enhanced networks can lead to a significant improvement.
Abstract:This study introduces an innovative approach that integrates community detection algorithms with Graph Neural Network (GNN) models to enhance link prediction in scientific literature networks. We specifically focus on the utilization of the Louvain community detection algorithm to uncover latent community structures within these networks, which are then incorporated into GNN architectures to predict potential links. Our methodology demonstrates the importance of understanding community dynamics in complex networks and leverages the strengths of both community detection and GNNs to improve predictive accuracy. Through extensive experiments on bipartite graphs representing scientific collaborations and citations, our approach not only highlights the synergy between community detection and GNNs but also addresses some of the prevalent challenges in link prediction, such as scalability and resolution limits. The results suggest that incorporating community-level information can significantly enhance the performance of GNNs in link prediction tasks. This work contributes to the evolving field of network science by offering a novel perspective on integrating advanced machine learning techniques with traditional network analysis methods to better understand and predict the intricate patterns of scientific collaborations.
Abstract:This letter investigates the coexistence between near-field (NF) and far-field (FF) communications, where multiple FF users are clustered to be served on the beams of legacy NF users, via non-orthogonal multiple access (NOMA). Three different successive interference cancellation (SIC) decoding strategies are proposed and a sum rate maximization problem is formulated to optimize the assignment and decoding order. The beam allocation problem is further reformulated as an overlapping coalitional game, which facilitates the the design of the proposed clustering algorithm. The optimal decoding order in each cluster is also derived, which can be integrated into the proposed clustering. Simulation results demonstrate that the proposed clustering algorithm is able to significantly improve the sum rate of the considered system, and the developed strategies achieve different trade-offs between sum rate and fairness.
Abstract:In this paper, federated learning (FL) over wireless networks is investigated. In each communication round, a subset of devices is selected to participate in the aggregation with limited time and energy. In order to minimize the convergence time, global loss and latency are jointly considered in a Stackelberg game based framework. Specifically, age of information (AoI) based device selection is considered at leader-level as a global loss minimization problem, while sub-channel assignment, computational resource allocation, and power allocation are considered at follower-level as a latency minimization problem. By dividing the follower-level problem into two sub-problems, the best response of the follower is obtained by a monotonic optimization based resource allocation algorithm and a matching based sub-channel assignment algorithm. By deriving the upper bound of convergence rate, the leader-level problem is reformulated, and then a list based device selection algorithm is proposed to achieve Stackelberg equilibrium. Simulation results indicate that the proposed device selection scheme outperforms other schemes in terms of the global loss, and the developed algorithms can significantly decrease the time consumption of computation and communication.