Abstract:Recently, the application of diffusion models has facilitated the significant development of speech and audio generation. Nevertheless, the quality of samples generated by diffusion models still needs improvement. And the effectiveness of the method is accompanied by the extensive number of sampling steps, leading to an extended synthesis time necessary for generating high-quality audio. Previous Text-to-Audio (TTA) methods mostly used diffusion models in the latent space for audio generation. In this paper, we explore the integration of the Flow Matching (FM) model into the audio latent space for audio generation. The FM is an alternative simulation-free method that trains continuous normalization flows (CNF) based on regressing vector fields. We demonstrate that our model significantly enhances the quality of generated audio samples, achieving better performance than prior models. Moreover, it reduces the number of inference steps to ten steps almost without sacrificing performance.
Abstract:Recently, x-vector has been a successful and popular approach for speaker verification, which employs a time delay neural network (TDNN) and statistics pooling to extract speaker characterizing embedding from variable-length utterances. Improvement upon the x-vector has been an active research area, and enormous neural networks have been elaborately designed based on the x-vector, eg, extended TDNN (E-TDNN), factorized TDNN (F-TDNN), and densely connected TDNN (D-TDNN). In this work, we try to identify the optimal architectures from a TDNN based search space employing neural architecture search (NAS), named SpeechNAS. Leveraging the recent advances in the speaker recognition, such as high-order statistics pooling, multi-branch mechanism, D-TDNN and angular additive margin softmax (AAM) loss with a minimum hyper-spherical energy (MHE), SpeechNAS automatically discovers five network architectures, from SpeechNAS-1 to SpeechNAS-5, of various numbers of parameters and GFLOPs on the large-scale text-independent speaker recognition dataset VoxCeleb1. Our derived best neural network achieves an equal error rate (EER) of 1.02% on the standard test set of VoxCeleb1, which surpasses previous TDNN based state-of-the-art approaches by a large margin. Code and trained weights are in https://github.com/wentaozhu/speechnas.git
Abstract:The audio source separation tasks, such as speech enhancement, speech separation, and music source separation, have achieved impressive performance in recent studies. The powerful modeling capabilities of deep neural networks give us hope for more challenging tasks. This paper launches a new multi-task audio source separation (MTASS) challenge to separate the speech, music, and noise signals from the monaural mixture. First, we introduce the details of this task and generate a dataset of mixtures containing speech, music, and background noises. Then, we propose an MTASS model in the complex domain to fully utilize the differences in spectral characteristics of the three audio signals. In detail, the proposed model follows a two-stage pipeline, which separates the three types of audio signals and then performs signal compensation separately. After comparing different training targets, the complex ratio mask is selected as a more suitable target for the MTASS. The experimental results also indicate that the residual signal compensation module helps to recover the signals further. The proposed model shows significant advantages in separation performance over several well-known separation models.