Abstract:In this work, we develop a specialized dataset aimed at enhancing the evaluation and fine-tuning of large language models (LLMs) specifically for wireless communication applications. The dataset includes a diverse set of multi-hop questions, including true/false and multiple-choice types, spanning varying difficulty levels from easy to hard. By utilizing advanced language models for entity extraction and question generation, rigorous data curation processes are employed to maintain high quality and relevance. Additionally, we introduce a Pointwise V-Information (PVI) based fine-tuning method, providing a detailed theoretical analysis and justification for its use in quantifying the information content of training data with 2.24\% and 1.31\% performance boost for different models compared to baselines, respectively. To demonstrate the effectiveness of the fine-tuned models with the proposed methodologies on practical tasks, we also consider different tasks, including summarizing optimization problems from technical papers and solving the mathematical problems related to non-orthogonal multiple access (NOMA), which are generated by using the proposed multi-agent framework. Simulation results show significant performance gain in summarization tasks with 20.9\% in the ROUGE-L metrics. We also study the scaling laws of fine-tuning LLMs and the challenges LLMs face in the field of wireless communications, offering insights into their adaptation to wireless communication tasks. This dataset and fine-tuning methodology aim to enhance the training and evaluation of LLMs, contributing to advancements in LLMs for wireless communication research and applications.
Abstract:This study explores the benefits of integrating the novel clustered federated learning (CFL) approach with non-orthogonal multiple access (NOMA) under non-independent and identically distributed (non-IID) datasets, where multiple devices participate in the aggregation with time limitations and a finite number of sub-channels. A detailed theoretical analysis of the generalization gap that measures the degree of non-IID in the data distribution is presented. Following that, solutions to address the challenges posed by non-IID conditions are proposed with the analysis of the properties. Specifically, users' data distributions are parameterized as concentration parameters and grouped using spectral clustering, with Dirichlet distribution serving as the prior. The investigation into the generalization gap and convergence rate guides the design of sub-channel assignments through the matching-based algorithm, and the power allocation is achieved by Karush-Kuhn-Tucker (KKT) conditions with the derived closed-form solution. The extensive simulation results show that the proposed cluster-based FL framework can outperform FL baselines in terms of both test accuracy and convergence rate. Moreover, jointly optimizing sub-channel and power allocation in NOMA-enhanced networks can lead to a significant improvement.