Abstract:Real-world image super-resolution (Real-ISR) aims to reconstruct high-resolution images from low-resolution inputs degraded by complex, unknown processes. While many Stable Diffusion (SD)-based Real-ISR methods have achieved remarkable success, their slow, multi-step inference hinders practical deployment. Recent SD-based one-step networks like OSEDiff and S3Diff alleviate this issue but still incur high computational costs due to their reliance on large pretrained SD models. This paper proposes a novel Real-ISR method, AdcSR, by distilling the one-step diffusion network OSEDiff into a streamlined diffusion-GAN model under our Adversarial Diffusion Compression (ADC) framework. We meticulously examine the modules of OSEDiff, categorizing them into two types: (1) Removable (VAE encoder, prompt extractor, text encoder, etc.) and (2) Prunable (denoising UNet and VAE decoder). Since direct removal and pruning can degrade the model's generation capability, we pretrain our pruned VAE decoder to restore its ability to decode images and employ adversarial distillation to compensate for performance loss. This ADC-based diffusion-GAN hybrid design effectively reduces complexity by 73% in inference time, 78% in computation, and 74% in parameters, while preserving the model's generation capability. Experiments manifest that our proposed AdcSR achieves competitive recovery quality on both synthetic and real-world datasets, offering up to 9.3$\times$ speedup over previous one-step diffusion-based methods. Code and models will be made available.
Abstract:Recent years have witnessed the success of deep networks in compressed sensing (CS), which allows for a significant reduction in sampling cost and has gained growing attention since its inception. In this paper, we propose a new practical and compact network dubbed PCNet for general image CS. Specifically, in PCNet, a novel collaborative sampling operator is designed, which consists of a deep conditional filtering step and a dual-branch fast sampling step. The former learns an implicit representation of a linear transformation matrix into a few convolutions and first performs adaptive local filtering on the input image, while the latter then uses a discrete cosine transform and a scrambled block-diagonal Gaussian matrix to generate under-sampled measurements. Our PCNet is equipped with an enhanced proximal gradient descent algorithm-unrolled network for reconstruction. It offers flexibility, interpretability, and strong recovery performance for arbitrary sampling rates once trained. Additionally, we provide a deployment-oriented extraction scheme for single-pixel CS imaging systems, which allows for the convenient conversion of any linear sampling operator to its matrix form to be loaded onto hardware like digital micro-mirror devices. Extensive experiments on natural image CS, quantized CS, and self-supervised CS demonstrate the superior reconstruction accuracy and generalization ability of PCNet compared to existing state-of-the-art methods, particularly for high-resolution images. Code is available at https://github.com/Guaishou74851/PCNet.
Abstract:Ultra High Resolution (UHR) remote sensing imagery (RSI) (e.g. 100,000 $\times$ 100,000 pixels or more) poses a significant challenge for current Remote Sensing Multimodal Large Language Models (RSMLLMs). If choose to resize the UHR image to standard input image size, the extensive spatial and contextual information that UHR images contain will be neglected. Otherwise, the original size of these images often exceeds the token limits of standard RSMLLMs, making it difficult to process the entire image and capture long-range dependencies to answer the query based on the abundant visual context. In this paper, we introduce ImageRAG for RS, a training-free framework to address the complexities of analyzing UHR remote sensing imagery. By transforming UHR remote sensing image analysis task to image's long context selection task, we design an innovative image contextual retrieval mechanism based on the Retrieval-Augmented Generation (RAG) technique, denoted as ImageRAG. ImageRAG's core innovation lies in its ability to selectively retrieve and focus on the most relevant portions of the UHR image as visual contexts that pertain to a given query. Fast path and slow path are proposed in this framework to handle this task efficiently and effectively. ImageRAG allows RSMLLMs to manage extensive context and spatial information from UHR RSI, ensuring the analysis is both accurate and efficient.
Abstract:Text-based person retrieval aims to identify the specific persons using textual descriptions as queries. Existing ad vanced methods typically depend on vision-language pre trained (VLP) models to facilitate effective cross-modal alignment. However, the inherent constraints of VLP mod-els, which include the global alignment biases and insuffi-cient self-feedback regulation, impede optimal retrieval per formance. In this paper, we propose MeFa, a Multi-Pathway Exploration, Feedback, and Adjustment framework, which deeply explores intrinsic feedback of intra and inter-modal to make targeted adjustment, thereby achieving more precise person-text associations. Specifically, we first design an intra modal reasoning pathway that generates hard negative sam ples for cross-modal data, leveraging feedback from these samples to refine intra-modal reasoning, thereby enhancing sensitivity to subtle discrepancies. Subsequently, we intro duce a cross-modal refinement pathway that utilizes both global information and intermodal feedback to refine local in formation, thus enhancing its global semantic representation. Finally, the discriminative clue correction pathway incorpo rates fine-grained features of secondary similarity as discrim inative clues to further mitigate retrieval failures caused by disparities in these features. Experimental results on three public benchmarks demonstrate that MeFa achieves superior person retrieval performance without necessitating additional data or complex structures.
Abstract:Adaptation of pretrained vision-language models such as CLIP to various downstream tasks have raised great interest in recent researches. Previous works have proposed a variety of test-time adaptation (TTA) methods to achieve strong generalization without any knowledge of the target domain. However, existing training-required TTA approaches like TPT necessitate entropy minimization that involves large computational overhead, while training-free methods like TDA overlook the potential for information mining from the test samples themselves. In this paper, we break down the design of existing popular training-required and training-free TTA methods and bridge the gap between them within our framework. Specifically, we maintain a light-weight key-value memory for feature retrieval from instance-agnostic historical samples and instance-aware boosting samples. The historical samples are filtered from the testing data stream and serve to extract useful information from the target distribution, while the boosting samples are drawn from regional bootstrapping and capture the knowledge of the test sample itself. We theoretically justify the rationality behind our method and empirically verify its effectiveness on both the out-of-distribution and the cross-domain datasets, showcasing its applicability in real-world situations.
Abstract:Traditional rule-based physical models are limited by their reliance on singular physical formulas and parameters, making it difficult to effectively tackle the intricate tasks associated with crowd simulation. Recent research has introduced deep learning methods to tackle these issues, but most current approaches focus primarily on generating pedestrian trajectories, often lacking interpretability and failing to provide real-time dynamic simulations.To address the aforementioned issues, we propose a novel data-driven crowd simulation framework that integrates Physics-informed Machine Learning (PIML) with navigation potential fields. Our approach leverages the strengths of both physical models and PIML. Specifically, we design an innovative Physics-informed Spatio-temporal Graph Convolutional Network (PI-STGCN) as a data-driven module to predict pedestrian movement trends based on crowd spatio-temporal data. Additionally, we construct a physical model of navigation potential fields based on flow field theory to guide pedestrian movements, thereby reinforcing physical constraints during the simulation. In our framework, navigation potential fields are dynamically computed and updated based on the movement trends predicted by the PI-STGCN, while the updated crowd dynamics, guided by these fields, subsequently feed back into the PI-STGCN. Comparative experiments on two publicly available large-scale real-world datasets across five scenes demonstrate that our proposed framework outperforms existing rule-based methods in accuracy and fidelity. The similarity between simulated and actual pedestrian trajectories increases by 10.8%, while the average error is reduced by 4%. Moreover, our framework exhibits greater adaptability and better interpretability compared to methods that rely solely on deep learning for trajectory generation.
Abstract:Adaptation of pretrained vision-language models such as CLIP to various downstream tasks have raised great interest in recent researches. Previous works have proposed a variety of test-time adaptation (TTA) methods to achieve strong generalization without any knowledge of the target domain. However, existing training-required TTA approaches like TPT necessitate entropy minimization that involves large computational overhead, while training-free methods like TDA overlook the potential for information mining from the test samples themselves. In this paper, we break down the design of existing popular training-required and training-free TTA methods and bridge the gap between them within our framework. Specifically, we maintain a light-weight key-value memory for feature retrieval from instance-agnostic historical samples and instance-aware boosting samples. The historical samples are filtered from the testing data stream and serve to extract useful information from the target distribution, while the boosting samples are drawn from regional bootstrapping and capture the knowledge of the test sample itself. We theoretically justify the rationality behind our method and empirically verify its effectiveness on both the out-of-distribution and the cross-domain datasets, showcasing its applicability in real-world situations.
Abstract:Point clouds, as a primary representation of 3D data, can be categorized into scene domain point clouds and object domain point clouds based on the modeled content. Masked autoencoders (MAE) have become the mainstream paradigm in point clouds self-supervised learning. However, existing MAE-based methods are domain-specific, limiting the model's generalization. In this paper, we propose to pre-train a general Point cloud Hybrid-Domain Masked AutoEncoder (PointHDMAE) via a block-to-scene pre-training strategy. We first propose a hybrid-domain masked autoencoder consisting of an encoder and decoder belonging to the scene domain and object domain, respectively. The object domain encoder specializes in handling object point clouds and multiple shared object encoders assist the scene domain encoder in analyzing the scene point clouds. Furthermore, we propose a block-to-scene strategy to pre-train our hybrid-domain model. Specifically, we first randomly select point blocks within a scene and apply a set of transformations to convert each point block coordinates from the scene space to the object space. Then, we employ an object-level mask and reconstruction pipeline to recover the masked points of each block, enabling the object encoder to learn a universal object representation. Finally, we introduce a scene-level block position regression pipeline, which utilizes the blocks' features in the object space to regress these blocks' initial positions within the scene space, facilitating the learning of scene representations. Extensive experiments across different datasets and tasks demonstrate the generalization and superiority of our hybrid-domain model.
Abstract:With recent advances in large language models (LLMs), there has been emerging numbers of research in developing Semantic IDs based on LLMs to enhance the performance of recommendation systems. However, the dimension of these embeddings needs to match that of the ID embedding in recommendation, which is usually much smaller than the original length. Such dimension compression results in inevitable losses in discriminability and dimension robustness of the LLM embeddings, which motivates us to scale up the semantic representation. In this paper, we propose Mixture-of-Codes, which first constructs multiple independent codebooks for LLM representation in the indexing stage, and then utilizes the Semantic Representation along with a fusion module for the downstream recommendation stage. Extensive analysis and experiments demonstrate that our method achieves superior discriminability and dimension robustness scalability, leading to the best scale-up performance in recommendations.
Abstract:Recent advances in diffusion-based Large Restoration Models (LRMs) have significantly improved photo-realistic image restoration by leveraging the internal knowledge embedded within model weights. However, existing LRMs often suffer from the hallucination dilemma, i.e., producing incorrect contents or textures when dealing with severe degradations, due to their heavy reliance on limited internal knowledge. In this paper, we propose an orthogonal solution called the Retrieval-augmented Framework for Image Restoration (ReFIR), which incorporates retrieved images as external knowledge to extend the knowledge boundary of existing LRMs in generating details faithful to the original scene. Specifically, we first introduce the nearest neighbor lookup to retrieve content-relevant high-quality images as reference, after which we propose the cross-image injection to modify existing LRMs to utilize high-quality textures from retrieved images. Thanks to the additional external knowledge, our ReFIR can well handle the hallucination challenge and facilitate faithfully results. Extensive experiments demonstrate that ReFIR can achieve not only high-fidelity but also realistic restoration results. Importantly, our ReFIR requires no training and is adaptable to various LRMs.