Abstract:The evolutionary processes of complex systems contain critical information regarding their functional characteristics. The generation time of edges provides insights into the historical evolution of various networked complex systems, such as protein-protein interaction networks, ecosystems, and social networks. Recovering these evolutionary processes holds significant scientific value, including aiding in the interpretation of the evolution of protein-protein interaction networks. However, existing methods are capable of predicting the generation times of remaining edges given a partial temporal network but often perform poorly in cross-network prediction tasks. These methods frequently fail in edge generation time recovery tasks for static networks that lack timestamps. In this work, we adopt a comparative paradigm-based framework that fuses multiple networks for training, enabling cross-network learning of the relationship between network structure and edge generation times. Compared to separate training, this approach yields an average accuracy improvement of 16.98%. Furthermore, given the difficulty in collecting temporal networks, we propose a novel diffusion-model-based generation method to produce a large number of temporal networks. By combining real temporal networks with generated ones for training, we achieve an additional average accuracy improvement of 5.46% through joint training.
Abstract:Top-N recommendation aims to recommend each consumer a small set of N items from a large collection of items, and its accuracy is one of the most common indexes to evaluate the performance of a recommendation system. While a large number of algorithms are proposed to push the Top-N accuracy by learning the user preference from their history purchase data, a predictability question is naturally raised - whether there is an upper limit of such Top-N accuracy. This work investigates such predictability by studying the degree of regularity from a specific set of user behavior data. Quantifying the predictability of Top-N recommendations requires simultaneously quantifying the limits on the accuracy of the N behaviors with the highest probability. This greatly increases the difficulty of the problem. To achieve this, we firstly excavate the associations among N behaviors with the highest probability and describe the user behavior distribution based on the information theory. Then, we adopt the Fano inequality to scale and obtain the Top-N predictability. Extensive experiments are conducted on the real-world data where significant improvements are observed compared to the state-of-the-art methods. We have not only completed the predictability calculation for N targets but also obtained predictability that is much closer to the true value than existing methods. We expect our results to assist these research areas where the quantitative requirement of Top-N predictability is required.