Sid
Abstract:Existing backdoor attacks on multivariate time series (MTS) forecasting enforce strict temporal and dimensional coupling between triggers and target patterns, requiring synchronous activation at fixed positions across variables. However, realistic scenarios often demand delayed and variable-specific activation. We identify this critical unmet need and propose TDBA, a temporally decoupled backdoor attack framework for MTS forecasting. By injecting triggers that encode the expected location of the target pattern, TDBA enables the activation of the target pattern at any positions within the forecasted data, with the activation position flexibly varying across different variable dimensions. TDBA introduces two core modules: (1) a position-guided trigger generation mechanism that leverages smoothed Gaussian priors to generate triggers that are position-related to the predefined target pattern; and (2) a position-aware optimization module that assigns soft weights based on trigger completeness, pattern coverage, and temporal offset, facilitating targeted and stealthy attack optimization. Extensive experiments on real-world datasets show that TDBA consistently outperforms existing baselines in effectiveness while maintaining good stealthiness. Ablation studies confirm the controllability and robustness of its design.
Abstract:Web applications (web apps) have become a key arena for large language models (LLMs) to demonstrate their code generation capabilities and commercial potential. However, building a benchmark for LLM-generated web apps remains challenging due to the need for real-world user requirements, generalizable evaluation metrics without relying on ground-truth implementations or test cases, and interpretable evaluation results. To address these challenges, we introduce WebCoderBench, the first real-world-collected, generalizable, and interpretable benchmark for web app generation. WebCoderBench comprises 1,572 real user requirements, covering diverse modalities and expression styles that reflect realistic user intentions. WebCoderBench provides 24 fine-grained evaluation metrics across 9 perspectives, combining rule-based and LLM-as-a-judge paradigm for fully automated, objective, and general evaluation. Moreover, WebCoderBench adopts human-preference-aligned weights over metrics to yield interpretable overall scores. Experiments across 12 representative LLMs and 2 LLM-based agents show that there exists no dominant model across all evaluation metrics, offering an opportunity for LLM developers to optimize their models in a targeted manner for a more powerful version.
Abstract:As a pivotal task in data lake management, joinable table discovery has attracted widespread interest. While existing language model-based methods achieve remarkable performance by combining offline column representation learning with online ranking, their design insufficiently accounts for the underlying structural interactions: (1) offline, they directly model tables into isolated or pairwise columns, thereby struggling to capture the rich inter-table and intra-table structural information; and (2) online, they rank candidate columns based solely on query-candidate similarity, ignoring the mutual interactions among the candidates, leading to incoherent result sets. To address these limitations, we propose HyperJoin, a large language model (LLM)-augmented Hypergraph framework for Joinable table discovery. Specifically, we first construct a hypergraph to model tables using both the intra-table hyperedges and the LLM-augmented inter-table hyperedges. Consequently, the task of joinable table discovery is formulated as link prediction on this constructed hypergraph. We then design HIN, a Hierarchical Interaction Network that learns expressive column representations through bidirectional message passing over columns and hyperedges. To strengthen coherence and internal consistency in the result columns, we cast online ranking as a coherence-aware top-k column selection problem. We then introduce a reranking module that leverages a maximum spanning tree algorithm to prune noisy connections and maximize coherence. Experiments demonstrate the superiority of HyperJoin, achieving average improvements of 21.4% (Precision@15) and 17.2% (Recall@15) over the best baseline.
Abstract:Real-world software engineering tasks require coding agents that can operate over massive repositories, sustain long-horizon sessions, and reliably coordinate complex toolchains at test time. Existing research-grade coding agents offer transparency but struggle when scaled to heavier, production-level workloads, while production-grade systems achieve strong practical performance but provide limited extensibility, interpretability, and controllability. We introduce the Confucius Code Agent (CCA), a software engineering agent that can operate at large-scale codebases. CCA is built on top of the Confucius SDK, an agent development platform structured around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK integrates a unified orchestrator with hierarchical working memory for long-context reasoning, a persistent note-taking system for cross-session continual learning, and a modular extension system for reliable tool use. In addition, we introduce a meta-agent that automates the synthesis, evaluation, and refinement of agent configurations through a build-test-improve loop, enabling rapid adaptation to new tasks, environments, and tool stacks. Instantiated with these mechanisms, CCA demonstrates strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA reaches a Resolve@1 of 54.3%, exceeding prior research baselines and comparing favorably to commercial results, under identical repositories, model backends, and tool access.
Abstract:Recent selective state space models (SSMs), such as Mamba and Mamba-2, have demonstrated strong performance in sequence modeling owing to input-dependent selection mechanisms. However, these mechanisms lack theoretical grounding and cannot support context-aware selection from latent state dynamics. To address these limitations, we propose KOSS, a Kalman-optimal Selective State Space model that formulates selection as latent state uncertainty minimization. Derived from estimation theory, KOSS adopts a continuous-time latent update driven by a Kalman gain that dynamically modulates information propagation based on content and context, enabling a closed-loop, context-aware selectivity mechanism. To ensure stable computation and near-linear scalability, KOSS employs global spectral differentiation for frequency-domain derivative estimation, along with a segment-wise scan for hardware-efficient processing. On a selective copying task with distractors, KOSS achieves over 79\% accuracy while baselines drop below 20\%, demonstrating robust context-aware selection. Furthermore, across nine long-term forecasting benchmarks, KOSS reduces MSE by 2.92--36.23\% and consistently outperforms state-of-the-art models in both accuracy and stability. To assess real-world applicability, a case study on secondary surveillance radar (SSR) tracking confirms KOSS's robustness under irregular intervals and noisy conditions and demonstrates its effectiveness in real-world applications. Finally, supplementary experiments verify Kalman gain convergence and the frequency response of spectral differentiation, providing theoretical support for the proposed closed-loop design.




Abstract:Multivariate time series imputation is fundamental in applications such as healthcare, traffic forecasting, and biological modeling, where sensor failures and irregular sampling lead to pervasive missing values. However, existing Transformer- and diffusion-based models lack explicit inductive biases and frequency awareness, limiting their generalization under structured missing patterns and distribution shifts. We propose FADTI, a diffusion-based framework that injects frequency-informed feature modulation via a learnable Fourier Bias Projection (FBP) module and combines it with temporal modeling through self-attention and gated convolution. FBP supports multiple spectral bases, enabling adaptive encoding of both stationary and non-stationary patterns. This design injects frequency-domain inductive bias into the generative imputation process. Experiments on multiple benchmarks, including a newly introduced biological time series dataset, show that FADTI consistently outperforms state-of-the-art methods, particularly under high missing rates. Code is available at https://anonymous.4open.science/r/TimeSeriesImputation-52BF
Abstract:Large language models (LLMs) have shown strong performance in data-rich domains such as programming, but their reliability in engineering tasks remains limited. Circuit analysis -- requiring multimodal understanding and precise mathematical reasoning -- highlights these challenges. Although Gemini 2.5 Pro improves diagram interpretation and analog-circuit reasoning, it still struggles to consistently produce correct solutions when given both text and circuit diagrams. At the same time, engineering education needs scalable AI tools capable of generating accurate solutions for tasks such as automated homework feedback and question-answering. This paper presents an enhanced, end-to-end circuit problem solver built on Gemini 2.5 Pro. We first benchmark Gemini on a representative set of undergraduate circuit problems and identify two major failure modes: 1) circuit-recognition hallucinations, particularly incorrect source polarity detection, and 2) reasoning-process hallucinations, such as incorrect current directions. To address recognition errors, we integrate a fine-tuned YOLO detector and OpenCV processing to isolate voltage and current sources, enabling Gemini to re-identify source polarities from cropped images with near-perfect accuracy. To reduce reasoning errors, we introduce an ngspice-based verification loop in which Gemini generates a .cir file, ngspice simulates the circuit, and discrepancies trigger iterative regeneration with optional human-in-the-loop review. Across 83 problems, the proposed pipeline achieves a 97.59% success rate (81 correct solutions), substantially outperforming Gemini 2.5 Pro's original 79.52% accuracy. This system extends LLM capabilities for multimodal engineering problem-solving and supports the creation of high-quality educational datasets and AI-powered instructional tools.
Abstract:This paper provides a fundamental characterization of the discrete ambiguity functions (AFs) of random communication waveforms under arbitrary orthonormal modulation with random constellation symbols, which serve as a key metric for evaluating the delay-Doppler sensing performance in future ISAC applications. A unified analytical framework is developed for two types of AFs, namely the discrete periodic AF (DP-AF) and the fast-slow time AF (FST-AF), where the latter may be seen as a small-Doppler approximation of the DP-AF. By analyzing the expectation of squared AFs, we derive exact closed-form expressions for both the expected sidelobe level (ESL) and the expected integrated sidelobe level (EISL) under the DP-AF and FST-AF formulations. For the DP-AF, we prove that the normalized EISL is identical for all orthogonal waveforms. To gain structural insights, we introduce a matrix representation based on the finite Weyl-Heisenberg (WH) group, where each delay-Doppler shift corresponds to a WH operator acting on the ISAC signal. This WH-group viewpoint yields sharp geometric constraints on the lowest sidelobes: The minimum ESL can only occur along a one-dimensional cut or over a set of widely dispersed delay-Doppler bins. Consequently, no waveform can attain the minimum ESL over any compact two-dimensional region, leading to a no-optimality (no-go) result under the DP-AF framework. For the FST-AF, the closed-form ESL and EISL expressions reveal a constellation-dependent regime governed by its kurtosis: The OFDM modulation achieves the minimum ESL for sub-Gaussian constellations, whereas the OTFS waveform becomes optimal for super-Gaussian constellations. Finally, four representative waveforms, namely, SC, OFDM, OTFS, and AFDM, are examined under both frameworks, and all theoretical results are verified through numerical examples.




Abstract:Knowledge-based Visual Question Answering (KBVQA) necessitates external knowledge incorporation beyond cross-modal understanding. Existing KBVQA methods either utilize implicit knowledge in multimodal large language models (MLLMs) via in-context learning or explicit knowledge via retrieval augmented generation. However, their reasoning processes remain implicit, without explicit multi-step trajectories from MLLMs. To address this gap, we provide a Hindsight Distilled Reasoning (HinD) framework with Knowledge Encouragement Preference Optimization (KEPO), designed to elicit and harness internal knowledge reasoning ability in MLLMs. First, to tackle the reasoning supervision problem, we propose to emphasize the hindsight wisdom of MLLM by prompting a frozen 7B-size MLLM to complete the reasoning process between the question and its ground truth answer, constructing Hindsight-Zero training data. Then we self-distill Hindsight-Zero into Chain-of-Thought (CoT) Generator and Knowledge Generator, enabling the generation of sequential steps and discrete facts. Secondly, to tackle the misalignment between knowledge correctness and confidence, we optimize the Knowledge Generator with KEPO, preferring under-confident but helpful knowledge over the over-confident but unhelpful one. The generated CoT and sampled knowledge are then exploited for answer prediction. Experiments on OK-VQA and A-OKVQA validate the effectiveness of HinD, showing that HinD with elicited reasoning from 7B-size MLLM achieves superior performance without commercial model APIs or outside knowledge.




Abstract:Image restoration (IR) aims to recover clean images from degraded observations. Despite remarkable progress, most existing methods focus on a single degradation type, whereas real-world images often suffer from multiple coexisting degradations, such as rain, noise, and haze coexisting in a single image, which limits their practical effectiveness. In this paper, we propose an adaptive multi-degradation image restoration network that reconstructs images by leveraging decoupled representations of degradation ingredients to guide path selection. Specifically, we design a degradation ingredient decoupling block (DIDBlock) in the encoder to separate degradation ingredients statistically by integrating spatial and frequency domain information, enhancing the recognition of multiple degradation types and making their feature representations independent. In addition, we present fusion block (FBlock) to integrate degradation information across all levels using learnable matrices. In the decoder, we further introduce a task adaptation block (TABlock) that dynamically activates or fuses functional branches based on the multi-degradation representation, flexibly selecting optimal restoration paths under diverse degradation conditions. The resulting tightly integrated architecture, termed IMDNet, is extensively validated through experiments, showing superior performance on multi-degradation restoration while maintaining strong competitiveness on single-degradation tasks.