Sid
Abstract:Precise classification of megakaryocytes is crucial for diagnosing myelodysplastic syndromes. Although self-supervised learning has shown promise in medical image analysis, its application to classifying megakaryocytes in stained slides faces three main challenges: (1) pervasive background noise that obscures cellular details, (2) a long-tailed distribution that limits data for rare subtypes, and (3) complex morphological variations leading to high intra-class variability. To address these issues, we propose the ActiveSSF framework, which integrates active learning with self-supervised pretraining. Specifically, our approach employs Gaussian filtering combined with K-means clustering and HSV analysis (augmented by clinical prior knowledge) for accurate region-of-interest extraction; an adaptive sample selection mechanism that dynamically adjusts similarity thresholds to mitigate class imbalance; and prototype clustering on labeled samples to overcome morphological complexity. Experimental results on clinical megakaryocyte datasets demonstrate that ActiveSSF not only achieves state-of-the-art performance but also significantly improves recognition accuracy for rare subtypes. Moreover, the integration of these advanced techniques further underscores the practical potential of ActiveSSF in clinical settings. To foster further research, the code and datasets will be publicly released in the future.
Abstract:Dynamic graph clustering aims to detect and track time-varying clusters in dynamic graphs, revealing the evolutionary mechanisms of complex real-world dynamic systems. Matrix factorization-based methods are promising approaches for this task; however, these methods often struggle with scalability and can be time-consuming when applied to large-scale dynamic graphs. Moreover, they tend to lack robustness and are vulnerable to real-world noisy data. To address these issues, we make three key contributions. First, to improve scalability, we propose temporal separated matrix factorization, where a single matrix is divided into multiple smaller matrices for independent factorization, resulting in faster computation. Second, to improve robustness, we introduce bi-clustering regularization, which jointly optimizes graph embedding and clustering, thereby filtering out noisy features from the graph embeddings. Third, to further enhance effectiveness and efficiency, we propose selective embedding updating, where we update only the embeddings of dynamic nodes while the embeddings of static nodes are fixed among different timestamps. Experimental results on six synthetic and five real-world benchmarks demonstrate the scalability, robustness and effectiveness of our proposed method. Source code is available at https://github.com/Clearloveyuan/DyG-MF.
Abstract:Service robots operating in unstructured environments must effectively recognize and segment unknown objects to enhance their functionality. Traditional supervised learningbased segmentation techniques require extensive annotated datasets, which are impractical for the diversity of objects encountered in real-world scenarios. Unseen Object Instance Segmentation (UOIS) methods aim to address this by training models on synthetic data to generalize to novel objects, but they often suffer from the simulation-to-reality gap. This paper proposes a novel approach (ZISVFM) for solving UOIS by leveraging the powerful zero-shot capability of the segment anything model (SAM) and explicit visual representations from a selfsupervised vision transformer (ViT). The proposed framework operates in three stages: (1) generating object-agnostic mask proposals from colorized depth images using SAM, (2) refining these proposals using attention-based features from the selfsupervised ViT to filter non-object masks, and (3) applying K-Medoids clustering to generate point prompts that guide SAM towards precise object segmentation. Experimental validation on two benchmark datasets and a self-collected dataset demonstrates the superior performance of ZISVFM in complex environments, including hierarchical settings such as cabinets, drawers, and handheld objects. Our source code is available at https://github.com/Yinmlmaoliang/zisvfm.
Abstract:Sustainable AI is a subfield of AI for concerning developing and using AI systems in ways of aiming to reduce environmental impact and achieve sustainability. Sustainable AI is increasingly important given that training of and inference with AI models such as large langrage models are consuming a large amount of computing power. In this article, we discuss current issues, opportunities and example solutions for addressing these issues, and future challenges to tackle, from the data and system perspectives, related to data acquisition, data processing, and AI model training and inference.
Abstract:Service robots are increasingly entering the home to provide domestic tasks for residents. However, when working in an open, dynamic, and unstructured home environment, service robots still face challenges such as low intelligence for task execution and poor long-term autonomy (LTA), which has limited their deployment. As the basis of robotic task execution, environment modeling has attracted significant attention. This integrates core technologies such as environment perception, understanding, and representation to accurately recognize environmental information. This paper presents a comprehensive survey of environmental modeling from a new task-executionoriented perspective. In particular, guided by the requirements of robots in performing domestic service tasks in the home environment, we systematically review the progress that has been made in task-execution-oriented environmental modeling in four respects: 1) localization, 2) navigation, 3) manipulation, and 4) LTA. Current challenges are discussed, and potential research opportunities are also highlighted.
Abstract:Mixture-of-Expert (MoE) models outperform conventional models by selectively activating different subnets, named \emph{experts}, on a per-token basis. This gated computation generates dynamic communications that cannot be determined beforehand, challenging the existing GPU interconnects that remain \emph{static} during the distributed training process. In this paper, we advocate for a first-of-its-kind system, called mFabric, that unlocks topology reconfiguration \emph{during} distributed MoE training. Towards this vision, we first perform a production measurement study and show that the MoE dynamic communication pattern has \emph{strong locality}, alleviating the requirement of global reconfiguration. Based on this, we design and implement a \emph{regionally reconfigurable high-bandwidth domain} on top of existing electrical interconnects using optical circuit switching (OCS), achieving scalability while maintaining rapid adaptability. We have built a fully functional mFabric prototype with commodity hardware and a customized collective communication runtime that trains state-of-the-art MoE models with \emph{in-training} topology reconfiguration across 32 A100 GPUs. Large-scale packet-level simulations show that mFabric delivers comparable performance as the non-blocking fat-tree fabric while boosting the training cost efficiency (e.g., performance per dollar) of four representative MoE models by 1.2$\times$--1.5$\times$ and 1.9$\times$--2.3$\times$ at 100 Gbps and 400 Gbps link bandwidths, respectively.
Abstract:Remote sensing object detection is particularly challenging due to the high resolution, multi-scale features, and diverse ground object characteristics inherent in satellite and UAV imagery. These challenges necessitate more advanced approaches for effective object detection in such environments. While deep learning methods have achieved remarkable success in remote sensing object detection, they typically rely on large amounts of labeled data. Acquiring sufficient labeled data, particularly for novel or rare objects, is both challenging and time-consuming in remote sensing scenarios, limiting the generalization capabilities of existing models. To address these challenges, few-shot learning (FSL) has emerged as a promising approach, aiming to enable models to learn new classes from limited labeled examples. Building on this concept, few-shot object detection (FSOD) specifically targets object detection challenges in data-limited conditions. However, the generalization capability of FSOD models, particularly in remote sensing, is often constrained by the complex and diverse characteristics of the objects present in such environments. In this paper, we propose the Generalization-Enhanced Few-Shot Object Detection (GE-FSOD) model to improve the generalization capability in remote sensing FSOD tasks. Our model introduces three key innovations: the Cross-Level Fusion Pyramid Attention Network (CFPAN) for enhanced multi-scale feature representation, the Multi-Stage Refinement Region Proposal Network (MRRPN) for more accurate region proposals, and the Generalized Classification Loss (GCL) for improved classification performance in few-shot scenarios. Extensive experiments on the DIOR and NWPU VHR-10 datasets show that our model achieves state-of-the-art performance for few-shot object detection in remote sensing.
Abstract:Missing data imputation, which aims to impute the missing values in the raw datasets to achieve the completeness of datasets, is crucial for modern data-driven models like large language models (LLMs) and has attracted increasing interest over the past decades. Despite its importance, existing solutions for missing data imputation either 1) only support numerical and categorical data or 2) show an unsatisfactory performance due to their design prioritizing text data and the lack of key properties for tabular data imputation. In this paper, we propose UnIMP, a Unified IMPutation framework that leverages LLM and high-order message passing to enhance the imputation of mixed-type data including numerical, categorical, and text data. Specifically, we first introduce a cell-oriented hypergraph to model the table. We then propose BiHMP, an efficient Bidirectional High-order Message-Passing network to aggregate global-local information and high-order relationships on the constructed hypergraph while capturing the inter-column heterogeneity and intra-column homogeneity. To effectively and efficiently align the capacity of the LLM with the information aggregated by BiHMP, we introduce Xfusion, which, together with BiHMP, acts as adapters for the LLM. We follow a pre-training and fine-tuning pipeline to train UnIMP, integrating two optimizations: chunking technique, which divides tables into smaller chunks to enhance efficiency; and progressive masking technique, which gradually adapts the model to learn more complex data patterns. Both theoretical proofs and empirical experiments on 10 real world datasets highlight the superiority of UnIMP over existing techniques.
Abstract:Air-ground collaborative robots have shown great potential in the field of fire and rescue, which can quickly respond to rescue needs and improve the efficiency of task execution. Mapping and navigation, as the key foundation for air-ground collaborative robots to achieve efficient task execution, have attracted a great deal of attention. This growing interest in collaborative robot mapping and navigation is conducive to improving the intelligence of fire and rescue task execution, but there has been no comprehensive investigation of this field to highlight their strengths. In this paper, we present a systematic review of the ground-to-ground cooperative robots for fire and rescue from a new perspective of mapping and navigation. First, an air-ground collaborative robots framework for fire and rescue missions based on unmanned aerial vehicle (UAV) mapping and unmanned ground vehicle (UGV) navigation is introduced. Then, the research progress of mapping and navigation under this framework is systematically summarized, including UAV mapping, UAV/UGV co-localization, and UGV navigation, with their main achievements and limitations. Based on the needs of fire and rescue missions, the collaborative robots with different numbers of UAVs and UGVs are classified, and their practicality in fire and rescue tasks is elaborated, with a focus on the discussion of their merits and demerits. In addition, the application examples of air-ground collaborative robots in various firefighting and rescue scenarios are given. Finally, this paper emphasizes the current challenges and potential research opportunities, rounding up references for practitioners and researchers willing to engage in this vibrant area of air-ground collaborative robots.
Abstract:Spatial-temporal data collected across different geographic locations often suffer from missing values, posing challenges to data analysis. Existing methods primarily leverage fixed spatial graphs to impute missing values, which implicitly assume that the spatial relationship is roughly the same for all features across different locations. However, they may overlook the different spatial relationships of diverse features recorded by sensors in different locations. To address this, we introduce the multi-scale Graph Structure Learning framework for spatial-temporal Imputation (GSLI) that dynamically adapts to the heterogeneous spatial correlations. Our framework encompasses node-scale graph structure learning to cater to the distinct global spatial correlations of different features, and feature-scale graph structure learning to unveil common spatial correlation across features within all stations. Integrated with prominence modeling, our framework emphasizes nodes and features with greater significance in the imputation process. Furthermore, GSLI incorporates cross-feature and cross-temporal representation learning to capture spatial-temporal dependencies. Evaluated on six real incomplete spatial-temporal datasets, GSLI showcases the improvement in data imputation.