Abstract:Motivated by applications to deep learning which often fail standard Lipschitz smoothness requirements, we examine the problem of sampling from distributions that are not log-concave and are only weakly dissipative, with log-gradients allowed to grow superlinearly at infinity. In terms of structure, we only assume that the target distribution satisfies either a log-Sobolev or a Poincar\'e inequality and a local Lipschitz smoothness assumption with modulus growing possibly polynomially at infinity. This set of assumptions greatly exceeds the operational limits of the "vanilla" unadjusted Langevin algorithm (ULA), making sampling from such distributions a highly involved affair. To account for this, we introduce a taming scheme which is tailored to the growth and decay properties of the target distribution, and we provide explicit non-asymptotic guarantees for the proposed sampler in terms of the Kullback-Leibler (KL) divergence, total variation, and Wasserstein distance to the target distribution.
Abstract:In this article we propose a novel taming Langevin-based scheme called $\mathbf{sTULA}$ to sample from distributions with superlinearly growing log-gradient which also satisfy a Log-Sobolev inequality. We derive non-asymptotic convergence bounds in $KL$ and consequently total variation and Wasserstein-$2$ distance from the target measure. Non-asymptotic convergence guarantees are provided for the performance of the new algorithm as an optimizer. Finally, some theoretical results on isoperimertic inequalities for distributions with superlinearly growing gradients are provided. Key findings are a Log-Sobolev inequality with constant independent of the dimension, in the presence of a higher order regularization and a Poincare inequality with constant independent of temperature and dimension under a novel non-convex theoretical framework.
Abstract:In this article we consider sampling from log concave distributions in Hamiltonian setting, without assuming that the objective gradient is globally Lipschitz. We propose two algorithms based on monotone polygonal (tamed) Euler schemes, to sample from a target measure, and provide non-asymptotic 2-Wasserstein distance bounds between the law of the process of each algorithm and the target measure. Finally, we apply these results to bound the excess risk optimization error of the associated optimization problem.
Abstract:Artificial neural networks (ANNs) are typically highly nonlinear systems which are finely tuned via the optimization of their associated, non-convex loss functions. Typically, the gradient of any such loss function fails to be dissipative making the use of widely-accepted (stochastic) gradient descent methods problematic. We offer a new learning algorithm based on an appropriately constructed variant of the popular stochastic gradient Langevin dynamics (SGLD), which is called tamed unadjusted stochastic Langevin algorithm (TUSLA). We also provide a nonasymptotic analysis of the new algorithm's convergence properties in the context of non-convex learning problems with the use of ANNs. Thus, we provide finite-time guarantees for TUSLA to find approximate minimizers of both empirical and population risks. The roots of the TUSLA algorithm are based on the taming technology for diffusion processes with superlinear coefficients as developed in Sabanis (2013, 2016) and for MCMC algorithms in Brosse et al. (2019). Numerical experiments are presented which confirm the theoretical findings and illustrate the need for the use of the new algorithm in comparison to vanilla SGLD within the framework of ANNs.