Abstract:Cross-modal metric learning is a prominent research topic that bridges the semantic heterogeneity between vision and language. Existing methods frequently utilize simple cosine or complex distance metrics to transform the pairwise features into a similarity score, which suffers from an inadequate or inefficient capability for distance measurements. Consequently, we propose a Generalized Structural Sparse Function to dynamically capture thorough and powerful relationships across modalities for pair-wise similarity learning while remaining concise but efficient. Specifically, the distance metric delicately encapsulates two formats of diagonal and block-diagonal terms, automatically distinguishing and highlighting the cross-channel relevancy and dependency inside a structured and organized topology. Hence, it thereby empowers itself to adapt to the optimal matching patterns between the paired features and reaches a sweet spot between model complexity and capability. Extensive experiments on cross-modal and two extra uni-modal retrieval tasks (image-text retrieval, person re-identification, fine-grained image retrieval) have validated its superiority and flexibility over various popular retrieval frameworks. More importantly, we further discover that it can be seamlessly incorporated into multiple application scenarios, and demonstrates promising prospects from Attention Mechanism to Knowledge Distillation in a plug-and-play manner. Our code is publicly available at: https://github.com/Paranioar/GSSF.
Abstract:In high-stakes domains like legal question-answering, the accuracy and trustworthiness of generative AI systems are of paramount importance. This work presents a comprehensive benchmark of various methods to assess the groundedness of AI-generated responses, aiming to significantly enhance their reliability. Our experiments include similarity-based metrics and natural language inference models to evaluate whether responses are well-founded in the given contexts. We also explore different prompting strategies for large language models to improve the detection of ungrounded responses. We validated the effectiveness of these methods using a newly created grounding classification corpus, designed specifically for legal queries and corresponding responses from retrieval-augmented prompting, focusing on their alignment with source material. Our results indicate potential in groundedness classification of generated responses, with the best method achieving a macro-F1 score of 0.8. Additionally, we evaluated the methods in terms of their latency to determine their suitability for real-world applications, as this step typically follows the generation process. This capability is essential for processes that may trigger additional manual verification or automated response regeneration. In summary, this study demonstrates the potential of various detection methods to improve the trustworthiness of generative AI in legal settings.
Abstract:We introduce a group of related methods for binary classification tasks using probes of the hidden state activations in large language models (LLMs). Performance is on par with the largest and most advanced LLMs currently available, but requiring orders of magnitude fewer computational resources and not requiring labeled data. This approach involves translating class labels into a semantically rich description, spontaneous symmetry breaking of multilayer perceptron probes for unsupervised learning and inference, training probes to generate confidence scores (prior probabilities) from hidden state activations subject to known constraints via entropy maximization, and selecting the most confident probe model from an ensemble for prediction. These techniques are evaluated on four datasets using five base LLMs.
Abstract:Convolutional neural networks (CNNs) have been shown to be the state-of-the-art approach for modeling the transfer functions of visual cortical neurons. Cortical neurons in the primary visual cortex are are sensitive to contextual information mediated by extensive horizontal and feedback connections. Standard CNNs can integrate global spatial image information to model such contextual modulation via two mechanisms: successive rounds of convolutions and a fully connected readout layer. In this paper, we find that non-local networks or self-attention (SA) mechanisms, theoretically related to context-dependent flexible gating mechanisms observed in the primary visual cortex, improve neural response predictions over parameter-matched CNNs in two key metrics: tuning curve correlation and tuning peak. We factorize networks to determine the relative contribution of each context mechanism. This reveals that information in the local receptive field is most important for modeling the overall tuning curve, but surround information is critically necessary for characterizing the tuning peak. We find that self-attention can replace subsequent spatial-integration convolutions when learned in an incremental manner, and is further enhanced in the presence of a fully connected readout layer, suggesting that the two context mechanisms are complementary. Finally, we find that learning a receptive-field-centric model with self-attention, before incrementally learning a fully connected readout, yields a more biologically realistic model in terms of center-surround contributions.
Abstract:Retrieval-augmented Generation (RAG) systems have been actively studied and deployed across various industries to query on domain-specific knowledge base. However, evaluating these systems presents unique challenges due to the scarcity of domain-specific queries and corresponding ground truths, as well as a lack of systematic approaches to diagnosing the cause of failure cases -- whether they stem from knowledge deficits or issues related to system robustness. To address these challenges, we introduce GRAMMAR (GRounded And Modular Methodology for Assessment of RAG), an evaluation framework comprising two key elements: 1) a data generation process that leverages relational databases and LLMs to efficiently produce scalable query-answer pairs. This method facilitates the separation of query logic from linguistic variations for enhanced debugging capabilities; and 2) an evaluation framework that differentiates knowledge gaps from robustness and enables the identification of defective modules. Our empirical results underscore the limitations of current reference-free evaluation approaches and the reliability of GRAMMAR to accurately identify model vulnerabilities.
Abstract:Image-text matching remains a challenging task due to heterogeneous semantic diversity across modalities and insufficient distance separability within triplets. Different from previous approaches focusing on enhancing multi-modal representations or exploiting cross-modal correspondence for more accurate retrieval, in this paper we aim to leverage the knowledge transfer between peer branches in a boosting manner to seek a more powerful matching model. Specifically, we propose a brand-new Deep Boosting Learning (DBL) algorithm, where an anchor branch is first trained to provide insights into the data properties, with a target branch gaining more advanced knowledge to develop optimal features and distance metrics. Concretely, an anchor branch initially learns the absolute or relative distance between positive and negative pairs, providing a foundational understanding of the particular network and data distribution. Building upon this knowledge, a target branch is concurrently tasked with more adaptive margin constraints to further enlarge the relative distance between matched and unmatched samples. Extensive experiments validate that our DBL can achieve impressive and consistent improvements based on various recent state-of-the-art models in the image-text matching field, and outperform related popular cooperative strategies, e.g., Conventional Distillation, Mutual Learning, and Contrastive Learning. Beyond the above, we confirm that DBL can be seamlessly integrated into their training scenarios and achieve superior performance under the same computational costs, demonstrating the flexibility and broad applicability of our proposed method. Our code is publicly available at: https://github.com/Paranioar/DBL.
Abstract:Long-context large language models (LLMs) hold promise for tasks such as question-answering (QA) over long documents, but they tend to miss important information in the middle of context documents (arXiv:2307.03172v3). Here, we introduce $\textit{R&R}$ -- a combination of two novel prompt-based methods called $\textit{reprompting}$ and $\textit{in-context retrieval}$ (ICR) -- to alleviate this effect in document-based QA. In reprompting, we repeat the prompt instructions periodically throughout the context document to remind the LLM of its original task. In ICR, rather than instructing the LLM to answer the question directly, we instruct it to retrieve the top $k$ passage numbers most relevant to the given question, which are then used as an abbreviated context in a second QA prompt. We test R&R with GPT-4 Turbo and Claude-2.1 on documents up to 80k tokens in length and observe a 16-point boost in QA accuracy on average. Our further analysis suggests that R&R improves performance on long document-based QA because it reduces the distance between relevant context and the instructions. Finally, we show that compared to short-context chunkwise methods, R&R enables the use of larger chunks that cost fewer LLM calls and output tokens, while minimizing the drop in accuracy.
Abstract:In this work, we develop an open-source surgical simulation environment that includes a realistic model obtained by MRI-scanning a physical phantom, for the purpose of training and evaluating a Learning from Demonstration (LfD) algorithm for autonomous suturing. The LfD algorithm utilizes Dynamic Movement Primitives (DMP) and Locally Weighted Regression (LWR), but focuses on the needle trajectory, rather than the instruments, to obtain better generality with respect to needle grasps. We conduct a user study to collect multiple suturing demonstrations and perform a comprehensive analysis of the ability of the LfD algorithm to generalize from a demonstration at one location in one phantom to different locations in the same phantom and to a different phantom. Our results indicate good generalization, on the order of 91.5%, when learning from more experienced subjects, indicating the need to integrate skill assessment in the future.
Abstract:Occluded person re-identification (ReID) is a very challenging task due to the occlusion disturbance and incomplete target information. Leveraging external cues such as human pose or parsing to locate and align part features has been proven to be very effective in occluded person ReID. Meanwhile, recent Transformer structures have a strong ability of long-range modeling. Considering the above facts, we propose a Teacher-Student Decoder (TSD) framework for occluded person ReID, which utilizes the Transformer decoder with the help of human parsing. More specifically, our proposed TSD consists of a Parsing-aware Teacher Decoder (PTD) and a Standard Student Decoder (SSD). PTD employs human parsing cues to restrict Transformer's attention and imparts this information to SSD through feature distillation. Thereby, SSD can learn from PTD to aggregate information of body parts automatically. Moreover, a mask generator is designed to provide discriminative regions for better ReID. In addition, existing occluded person ReID benchmarks utilize occluded samples as queries, which will amplify the role of alleviating occlusion interference and underestimate the impact of the feature absence issue. Contrastively, we propose a new benchmark with non-occluded queries, serving as a complement to the existing benchmark. Extensive experiments demonstrate that our proposed method is superior and the new benchmark is essential. The source codes are available at https://github.com/hh23333/TSD.
Abstract:Continual learning strives to ensure stability in solving previously seen tasks while demonstrating plasticity in a novel domain. Recent advances in CL are mostly confined to a supervised learning setting, especially in NLP domain. In this work, we consider a few-shot continual active learning (CAL) setting where labeled data is inadequate, and unlabeled data is abundant but with a limited annotation budget. We propose a simple but efficient method, called Meta-Continual Active Learning. Specifically, we employ meta-learning and experience replay to address the trade-off between stability and plasticity. As a result, it finds an optimal initialization that efficiently utilizes annotated information for fast adaptation while preventing catastrophic forgetting of past tasks. We conduct extensive experiments to validate the effectiveness of the proposed method and analyze the effect of various active learning strategies and memory sample selection methods in a few-shot CAL setup. Our experiment results demonstrate that random sampling is the best default strategy for both active learning and memory sample selection to solve few-shot CAL problems.