Abstract:Biomedical visual question answering (VQA) has been widely studied and has demonstrated significant application value and potential in fields such as assistive medical diagnosis. Despite their success, current biomedical VQA models perform multimodal information interaction only at the model level within large language models (LLMs), leading to suboptimal multimodal semantic alignment when dealing with complex tasks. To address this issue, we propose BioD2C: a novel Dual-level Semantic Consistency Constraint Framework for Biomedical VQA, which achieves dual-level semantic interaction alignment at both the model and feature levels, enabling the model to adaptively learn visual features based on the question. Specifically, we firstly integrate textual features into visual features via an image-text fusion mechanism as feature-level semantic interaction, obtaining visual features conditioned on the given text; and then introduce a text-queue-based cross-modal soft semantic loss function to further align the image semantics with the question semantics. Specifically, in this work, we establish a new dataset, BioVGQ, to address inherent biases in prior datasets by filtering manually-altered images and aligning question-answer pairs with multimodal context, and train our model on this dataset. Extensive experimental results demonstrate that BioD2C achieves state-of-the-art (SOTA) performance across multiple downstream datasets, showcasing its robustness, generalizability, and potential to advance biomedical VQA research.
Abstract:Immunohistochemistry (IHC) staining plays a significant role in the evaluation of diseases such as breast cancer. The H&E-to-IHC transformation based on generative models provides a simple and cost-effective method for obtaining IHC images. Although previous models can perform digital coloring well, they still suffer from (i) coloring only through the pixel features that are not prominent in HE, which is easy to cause information loss in the coloring process; (ii) The lack of pixel-perfect H&E-IHC groundtruth pairs poses a challenge to the classical L1 loss.To address the above challenges, we propose an adaptive information enhanced coloring framework based on feature extractors. We first propose the VMFE module to effectively extract the color information features using multi-scale feature extraction and wavelet transform convolution, while combining the shared decoder for feature fusion. The high-performance dual feature extractor of H&E-IHC is trained by contrastive learning, which can effectively perform feature alignment of HE-IHC in high latitude space. At the same time, the trained feature encoder is used to enhance the features and adaptively adjust the loss in the HE section staining process to solve the problems related to unclear and asymmetric information. We have tested on different datasets and achieved excellent performance.Our code is available at https://github.com/babyinsunshine/CEFF