Abstract:Cross-modal metric learning is a prominent research topic that bridges the semantic heterogeneity between vision and language. Existing methods frequently utilize simple cosine or complex distance metrics to transform the pairwise features into a similarity score, which suffers from an inadequate or inefficient capability for distance measurements. Consequently, we propose a Generalized Structural Sparse Function to dynamically capture thorough and powerful relationships across modalities for pair-wise similarity learning while remaining concise but efficient. Specifically, the distance metric delicately encapsulates two formats of diagonal and block-diagonal terms, automatically distinguishing and highlighting the cross-channel relevancy and dependency inside a structured and organized topology. Hence, it thereby empowers itself to adapt to the optimal matching patterns between the paired features and reaches a sweet spot between model complexity and capability. Extensive experiments on cross-modal and two extra uni-modal retrieval tasks (image-text retrieval, person re-identification, fine-grained image retrieval) have validated its superiority and flexibility over various popular retrieval frameworks. More importantly, we further discover that it can be seamlessly incorporated into multiple application scenarios, and demonstrates promising prospects from Attention Mechanism to Knowledge Distillation in a plug-and-play manner. Our code is publicly available at: https://github.com/Paranioar/GSSF.
Abstract:Current zero-shot anomaly detection (ZSAD) methods show remarkable success in prompting large pre-trained vision-language models to detect anomalies in a target dataset without using any dataset-specific training or demonstration. However, these methods are often focused on crafting/learning prompts that capture only coarse-grained semantics of abnormality, e.g., high-level semantics like "damaged", "imperfect", or "defective" on carpet. They therefore have limited capability in recognizing diverse abnormality details with distinctive visual appearance, e.g., specific defect types like color stains, cuts, holes, and threads on carpet. To address this limitation, we propose FAPrompt, a novel framework designed to learn Fine-grained Abnormality Prompts for more accurate ZSAD. To this end, we introduce a novel compound abnormality prompting module in FAPrompt to learn a set of complementary, decomposed abnormality prompts, where each abnormality prompt is formed by a compound of shared normal tokens and a few learnable abnormal tokens. On the other hand, the fine-grained abnormality patterns can be very different from one dataset to another. To enhance their cross-dataset generalization, we further introduce a data-dependent abnormality prior module that learns to derive abnormality features from each query/test image as a sample-wise abnormality prior to ground the abnormality prompts in a given target dataset. Comprehensive experiments conducted across 19 real-world datasets, covering both industrial defects and medical anomalies, demonstrate that FAPrompt substantially outperforms state-of-the-art methods by at least 3%-5% AUC/AP in both image- and pixel-level ZSAD tasks. Code is available at https://github.com/mala-lab/FAPrompt.
Abstract:Existing RGB-T tracking algorithms have made remarkable progress by leveraging the global interaction capability and extensive pre-trained models of the Transformer architecture. Nonetheless, these methods mainly adopt imagepair appearance matching and face challenges of the intrinsic high quadratic complexity of the attention mechanism, resulting in constrained exploitation of temporal information. Inspired by the recently emerged State Space Model Mamba, renowned for its impressive long sequence modeling capabilities and linear computational complexity, this work innovatively proposes a pure Mamba-based framework (MambaVT) to fully exploit spatio-temporal contextual modeling for robust visible-thermal tracking. Specifically, we devise the long-range cross-frame integration component to globally adapt to target appearance variations, and introduce short-term historical trajectory prompts to predict the subsequent target states based on local temporal location clues. Extensive experiments show the significant potential of vision Mamba for RGB-T tracking, with MambaVT achieving state-of-the-art performance on four mainstream benchmarks while requiring lower computational costs. We aim for this work to serve as a simple yet strong baseline, stimulating future research in this field. The code and pre-trained models will be made available.
Abstract:Mainstream approaches to spectral reconstruction (SR) primarily focus on designing Convolution- and Transformer-based architectures. However, CNN methods often face challenges in handling long-range dependencies, whereas Transformers are constrained by computational efficiency limitations. Recent breakthroughs in state-space model (e.g., Mamba) has attracted significant attention due to its near-linear computational efficiency and superior performance, prompting our investigation into its potential for SR problem. To this end, we propose the Gradient-guided Mamba for Spectral Reconstruction from RGB Images, dubbed GMSR-Net. GMSR-Net is a lightweight model characterized by a global receptive field and linear computational complexity. Its core comprises multiple stacked Gradient Mamba (GM) blocks, each featuring a tri-branch structure. In addition to benefiting from efficient global feature representation by Mamba block, we further innovatively introduce spatial gradient attention and spectral gradient attention to guide the reconstruction of spatial and spectral cues. GMSR-Net demonstrates a significant accuracy-efficiency trade-off, achieving state-of-the-art performance while markedly reducing the number of parameters and computational burdens. Compared to existing approaches, GMSR-Net slashes parameters and FLOPS by substantial margins of 10 times and 20 times, respectively. Code is available at https://github.com/wxy11-27/GMSR.
Abstract:The speed-precision trade-off is a critical problem for visual object tracking which usually requires low latency and deployment on constrained resources. Existing solutions for efficient tracking mainly focus on adopting light-weight backbones or modules, which nevertheless come at the cost of a sacrifice in precision. In this paper, inspired by dynamic network routing, we propose DyTrack, a dynamic transformer framework for efficient tracking. Real-world tracking scenarios exhibit diverse levels of complexity. We argue that a simple network is sufficient for easy frames in video sequences, while more computation could be assigned to difficult ones. DyTrack automatically learns to configure proper reasoning routes for various inputs, gaining better utilization of the available computational budget. Thus, it can achieve higher performance with the same running speed. We formulate instance-specific tracking as a sequential decision problem and attach terminating branches to intermediate layers of the entire model. Especially, to fully utilize the computations, we introduce the feature recycling mechanism to reuse the outputs of predecessors. Furthermore, a target-aware self-distillation strategy is designed to enhance the discriminating capabilities of early predictions by effectively mimicking the representation pattern of the deep model. Extensive experiments on multiple benchmarks demonstrate that DyTrack achieves promising speed-precision trade-offs with only a single model. For instance, DyTrack obtains 64.9% AUC on LaSOT with a speed of 256 fps.
Abstract:This paper explores the problem of Generalist Anomaly Detection (GAD), aiming to train one single detection model that can generalize to detect anomalies in diverse datasets from different application domains without any further training on the target data. Some recent studies have shown that large pre-trained Visual-Language Models (VLMs) like CLIP have strong generalization capabilities on detecting industrial defects from various datasets, but their methods rely heavily on handcrafted text prompts about defects, making them difficult to generalize to anomalies in other applications, e.g., medical image anomalies or semantic anomalies in natural images. In this work, we propose to train a GAD model with few-shot normal images as sample prompts for AD on diverse datasets on the fly. To this end, we introduce a novel approach that learns an in-context residual learning model for GAD, termed InCTRL. It is trained on an auxiliary dataset to discriminate anomalies from normal samples based on a holistic evaluation of the residuals between query images and few-shot normal sample prompts. Regardless of the datasets, per definition of anomaly, larger residuals are expected for anomalies than normal samples, thereby enabling InCTRL to generalize across different domains without further training. Comprehensive experiments on nine AD datasets are performed to establish a GAD benchmark that encapsulate the detection of industrial defect anomalies, medical anomalies, and semantic anomalies in both one-vs-all and multi-class setting, on which InCTRL is the best performer and significantly outperforms state-of-the-art competing methods. Code is available at https://github.com/mala-lab/InCTRL.
Abstract:Voice messages, by nature, prevent users from gauging the emotional tone without fully diving into the audio content. This hinders the shared emotional experience at the pre-retrieval stage. Research scarcely explored "Emotional Teasers"-pre-retrieval cues offering a glimpse into an awaiting message's emotional tone without disclosing its content. We introduce EmoWear, a smartwatch voice messaging system enabling users to apply 30 animation teasers on message bubbles to reflect emotions. EmoWear eases senders' choice by prioritizing emotions based on semantic and acoustic processing. EmoWear was evaluated in comparison with a mirroring system using color-coded message bubbles as emotional cues (N=24). Results showed EmoWear significantly enhanced emotional communication experience in both receiving and sending messages. The animated teasers were considered intuitive and valued for diverse expressions. Desirable interaction qualities and practical implications are distilled for future design. We thereby contribute both a novel system and empirical knowledge concerning emotional teasers for voice messaging.
Abstract:Advances in perception modeling have significantly improved the performance of object tracking. However, the current methods for specifying the target object in the initial frame are either by 1) using a box or mask template, or by 2) providing an explicit language description. These manners are cumbersome and do not allow the tracker to have self-reasoning ability. Therefore, this work proposes a new tracking task -- Instruction Tracking, which involves providing implicit tracking instructions that require the trackers to perform tracking automatically in video frames. To achieve this, we investigate the integration of knowledge and reasoning capabilities from a Large Vision-Language Model (LVLM) for object tracking. Specifically, we propose a tracker called TrackGPT, which is capable of performing complex reasoning-based tracking. TrackGPT first uses LVLM to understand tracking instructions and condense the cues of what target to track into referring embeddings. The perception component then generates the tracking results based on the embeddings. To evaluate the performance of TrackGPT, we construct an instruction tracking benchmark called InsTrack, which contains over one thousand instruction-video pairs for instruction tuning and evaluation. Experiments show that TrackGPT achieves competitive performance on referring video object segmentation benchmarks, such as getting a new state-of the-art performance of 66.5 $\mathcal{J}\&\mathcal{F}$ on Refer-DAVIS. It also demonstrates a superior performance of instruction tracking under new evaluation protocols. The code and models are available at \href{https://github.com/jiawen-zhu/TrackGPT}{https://github.com/jiawen-zhu/TrackGPT}.
Abstract:Open-set supervised anomaly detection (OSAD) - a recently emerging anomaly detection area - aims at utilizing a few samples of anomaly classes seen during training to detect unseen anomalies (i.e., samples from open-set anomaly classes), while effectively identifying the seen anomalies. Benefiting from the prior knowledge illustrated by the seen anomalies, current OSAD methods can often largely reduce false positive errors. However, these methods treat the anomaly examples as from a homogeneous distribution, rendering them less effective in generalizing to unseen anomalies that can be drawn from any distribution. In this paper, we propose to learn heterogeneous anomaly distributions using the limited anomaly examples to address this issue. To this end, we introduce a novel approach, namely Anomaly Heterogeneity Learning (AHL), that simulates a diverse set of heterogeneous (seen and unseen) anomaly distributions and then utilizes them to learn a unified heterogeneous abnormality model. Further, AHL is a generic framework that existing OSAD models can plug and play for enhancing their abnormality modeling. Extensive experiments on nine real-world anomaly detection datasets show that AHL can 1) substantially enhance different state-of-the-art (SOTA) OSAD models in detecting both seen and unseen anomalies, achieving new SOTA performance on a large set of datasets, and 2) effectively generalize to unseen anomalies in new target domains.
Abstract:Existing nighttime unmanned aerial vehicle (UAV) trackers follow an "Enhance-then-Track" architecture - first using a light enhancer to brighten the nighttime video, then employing a daytime tracker to locate the object. This separate enhancement and tracking fails to build an end-to-end trainable vision system. To address this, we propose a novel architecture called Darkness Clue-Prompted Tracking (DCPT) that achieves robust UAV tracking at night by efficiently learning to generate darkness clue prompts. Without a separate enhancer, DCPT directly encodes anti-dark capabilities into prompts using a darkness clue prompter (DCP). Specifically, DCP iteratively learns emphasizing and undermining projections for darkness clues. It then injects these learned visual prompts into a daytime tracker with fixed parameters across transformer layers. Moreover, a gated feature aggregation mechanism enables adaptive fusion between prompts and between prompts and the base model. Extensive experiments show state-of-the-art performance for DCPT on multiple dark scenario benchmarks. The unified end-to-end learning of enhancement and tracking in DCPT enables a more trainable system. The darkness clue prompting efficiently injects anti-dark knowledge without extra modules. Code and models will be released.