Abstract:Multimodal punchlines, which involve humor or sarcasm conveyed in image-caption pairs, are a popular way of communication on online multimedia platforms. With the rapid development of multimodal large language models (MLLMs), it is essential to assess their ability to effectively comprehend these punchlines. However, existing benchmarks on punchline comprehension suffer from three major limitations: 1) language shortcuts that allow models to solely rely on text, 2) lack of question diversity, and 3) narrow focus on a specific domain of multimodal content (e.g., cartoon). To address these limitations, we introduce a multimodal \textbf{Punch}line comprehension \textbf{Bench}mark, named \textbf{PunchBench}, which is tailored for accurate and comprehensive evaluation of punchline comprehension. To enhance the evaluation accuracy, we generate synonymous and antonymous captions by modifying original captions, which mitigates the impact of shortcuts in the captions. To provide a comprehensive evaluation, PunchBench incorporates diverse question formats and image-captions from various domains. On this basis, we conduct extensive evaluations and reveal a significant gap between state-of-the-art MLLMs and humans in punchline comprehension. To improve punchline comprehension, we propose Simple-to-Complex Chain-of-Question (SC-CoQ) strategy, enabling the models to incrementally address complicated questions by first mastering simple ones. SC-CoQ effectively enhances the performance of various MLLMs on PunchBench, surpassing in-context learning and chain-of-thought.
Abstract:Contextual information at the video level has become increasingly crucial for visual object tracking. However, existing methods typically use only a few tokens to convey this information, which can lead to information loss and limit their ability to fully capture the context. To address this issue, we propose a new video-level visual object tracking framework called MCITrack. It leverages Mamba's hidden states to continuously record and transmit extensive contextual information throughout the video stream, resulting in more robust object tracking. The core component of MCITrack is the Contextual Information Fusion module, which consists of the mamba layer and the cross-attention layer. The mamba layer stores historical contextual information, while the cross-attention layer integrates this information into the current visual features of each backbone block. This module enhances the model's ability to capture and utilize contextual information at multiple levels through deep integration with the backbone. Experiments demonstrate that MCITrack achieves competitive performance across numerous benchmarks. For instance, it gets 76.6% AUC on LaSOT and 80.0% AO on GOT-10k, establishing a new state-of-the-art performance. Code and models are available at https://github.com/kangben258/MCITrack.
Abstract:Underwater image enhancement (UIE) is a highly challenging task due to the complexity of underwater environment and the diversity of underwater image degradation. Due to the application of deep learning, current UIE methods have made significant progress. Most of the existing deep learning-based UIE methods follow a single-stage network which cannot effectively address the diverse degradations simultaneously. In this paper, we propose to address this issue by designing a two-stage deep learning framework and taking advantage of cascaded contrastive learning to guide the network training of each stage. The proposed method is called CCL-Net in short. Specifically, the proposed CCL-Net involves two cascaded stages, i.e., a color correction stage tailored to the color deviation issue and a haze removal stage tailored to improve the visibility and contrast of underwater images. To guarantee the underwater image can be progressively enhanced, we also apply contrastive loss as an additional constraint to guide the training of each stage. In the first stage, the raw underwater images are used as negative samples for building the first contrastive loss, ensuring the enhanced results of the first color correction stage are better than the original inputs. While in the second stage, the enhanced results rather than the raw underwater images of the first color correction stage are used as the negative samples for building the second contrastive loss, thus ensuring the final enhanced results of the second haze removal stage are better than the intermediate color corrected results. Extensive experiments on multiple benchmark datasets demonstrate that our CCL-Net can achieve superior performance compared to many state-of-the-art methods. The source code of CCL-Net will be released at https://github.com/lewis081/CCL-Net.
Abstract:Multi-modal fusion has played a vital role in multi-modal scene understanding. Most existing methods focus on cross-modal fusion involving two modalities, often overlooking more complex multi-modal fusion, which is essential for real-world applications like autonomous driving, where visible, depth, event, LiDAR, etc., are used. Besides, few attempts for multi-modal fusion, \emph{e.g.}, simple concatenation, cross-modal attention, and token selection, cannot well dig into the intrinsic shared and specific details of multiple modalities. To tackle the challenge, in this paper, we propose a Part-Whole Relational Fusion (PWRF) framework. For the first time, this framework treats multi-modal fusion as part-whole relational fusion. It routes multiple individual part-level modalities to a fused whole-level modality using the part-whole relational routing ability of Capsule Networks (CapsNets). Through this part-whole routing, our PWRF generates modal-shared and modal-specific semantics from the whole-level modal capsules and the routing coefficients, respectively. On top of that, modal-shared and modal-specific details can be employed to solve the issue of multi-modal scene understanding, including synthetic multi-modal segmentation and visible-depth-thermal salient object detection in this paper. Experiments on several datasets demonstrate the superiority of the proposed PWRF framework for multi-modal scene understanding. The source code has been released on https://github.com/liuyi1989/PWRF.
Abstract:Quantization is essential for deploying Large Language Models (LLMs) by enhancing memory efficiency and inference speed. Existing methods for activation quantization mainly address channel-wise outliers, often neglecting token-wise outliers, leading to reliance on costly per-token dynamic quantization. To address this, we introduce PrefixQuant, a novel technique that isolates outlier tokens offline without re-training. Specifically, PrefixQuant identifies high-frequency outlier tokens and prefixes them in the KV cache, preventing the generation of outlier tokens during inference and simplifying quantization. To our knowledge, PrefixQuant is the first to enable efficient per-tensor static quantization to outperform expensive per-token dynamic quantization. For instance, in W4A4KV4 (4- bit weight, 4-bit activation, and 4-bit KV cache) Llama-3-8B, PrefixQuant with per-tensor static quantization achieves a 7.43 WikiText2 perplexity and 71.08% average accuracy on 5 common-sense reasoning tasks, outperforming previous per-token dynamic quantization methods like QuaRot with 0.98 perplexity improvement and +5.98 points accuracy. Additionally, the inference speed of W4A4 quantized models using PrefixQuant is 1.60x to 2.81x faster than FP16 models and exceeds QuaRot models by 1.2x to 1.3x. Our code is available at \url{https://github.com/ChenMnZ/PrefixQuant}.
Abstract:The part-whole relational property endowed by Capsule Networks (CapsNets) has been known successful for camouflaged object detection due to its segmentation integrity. However, the previous Expectation Maximization (EM) capsule routing algorithm with heavy computation and large parameters obstructs this trend. The primary attribution behind lies in the pixel-level capsule routing. Alternatively, in this paper, we propose a novel mamba capsule routing at the type level. Specifically, we first extract the implicit latent state in mamba as capsule vectors, which abstract type-level capsules from pixel-level versions. These type-level mamba capsules are fed into the EM routing algorithm to get the high-layer mamba capsules, which greatly reduce the computation and parameters caused by the pixel-level capsule routing for part-whole relationships exploration. On top of that, to retrieve the pixel-level capsule features for further camouflaged prediction, we achieve this on the basis of the low-layer pixel-level capsules with the guidance of the correlations from adjacent-layer type-level mamba capsules. Extensive experiments on three widely used COD benchmark datasets demonstrate that our method significantly outperforms state-of-the-arts. Code has been available on https://github.com/Liangbo-Cheng/mamba\_capsule.
Abstract:Recent breakthroughs in preference alignment have significantly improved Large Language Models' ability to generate texts that align with human preferences and values. However, current alignment metrics typically emphasize the post-hoc overall improvement, while overlooking a critical aspect: regression, which refers to the backsliding on previously correctly-handled data after updates. This potential pitfall may arise from excessive fine-tuning on already well-aligned data, which subsequently leads to over-alignment and degeneration. To address this challenge, we propose FlipGuard, a constrained optimization approach to detect and mitigate update regression with focal attention. Specifically, FlipGuard identifies performance degradation using a customized reward characterization and strategically enforces a constraint to encourage conditional congruence with the pre-aligned model during training. Comprehensive experiments demonstrate that FlipGuard effectively alleviates update regression while demonstrating excellent overall performance, with the added benefit of knowledge preservation while aligning preferences.
Abstract:Various types of promising techniques have come into being for influence maximization whose aim is to identify influential nodes in complex networks. In essence, real-world applications usually have high requirements on the balance between time complexity and accuracy of influential nodes identification. To address the challenges of imperfect node influence measurement and inefficient seed nodes selection mechanism in such class of foregoing techniques, this article proposes a novel approach called Cost-Effective Community-Hierarchy-Based Mutual Voting for influence maximization in complex networks. First, we develop a method for measuring the importance of different nodes in networks based on an original concept of Dual-Scale Community-Hierarchy Information that synthesizes both hierarchy structural information and community structural information of nodes. The community structural information contained in the nodes is measured by a new notion of Hierarchical-Community Entropy. Second, we develop a method named Cost-Effective Mutual-Influence-based Voting for seed nodes selection. Hereinto, a low-computational-cost mutual voting mechanism and an updating strategy called Lazy Score Updating Strategy are newly constructed for optimizing the selecting of seed nodes. Third, we develop a balance index to evaluate the performance of different methods in striking the tradeoff between time complexity and the accuracy of influential nodes identification. Finally, we demonstrate the approach performance over ten public datasets. The extensive experiments show that the proposed approach outperforms 16 state-of-the-art techniques on the balance between time complexity and accuracy of influential nodes identification. Compared with the method with the second highest value of the balance index, our approach can be improved by at most 9.29%.
Abstract:This paper presents Range-SLAM, a real-time, lightweight SLAM system designed to address the challenges of localization and mapping in environments with smoke and other harsh conditions using Ultra-Wideband (UWB) signals. While optical sensors like LiDAR and cameras struggle in low-visibility environments, UWB signals provide a robust alternative for real-time positioning. The proposed system uses general UWB devices to achieve accurate mapping and localization without relying on expensive LiDAR or other dedicated hardware. By utilizing only the distance and Received Signal Strength Indicator (RSSI) provided by UWB sensors in relation to anchors, we combine the motion of the tag-carrying agent with raycasting algorithm to construct a 2D occupancy grid map in real time. To enhance localization in challenging conditions, a Weighted Least Squares (WLS) method is employed. Extensive real-world experiments, including smoke-filled environments and simulated
Abstract:Transformers have revolutionized the object detection landscape by introducing DETRs, acclaimed for their simplicity and efficacy. Despite their advantages, the substantial size of these models poses significant challenges for practical deployment, particularly in resource-constrained environments. This paper addresses the challenge of compressing DETR by leveraging knowledge distillation, a technique that holds promise for maintaining model performance while reducing size. A critical aspect of DETRs' performance is their reliance on queries to interpret object representations accurately. Traditional distillation methods often focus exclusively on positive queries, identified through bipartite matching, neglecting the rich information present in hard-negative queries. Our visual analysis indicates that hard-negative queries, focusing on foreground elements, are crucial for enhancing distillation outcomes. To this end, we introduce a novel Group Query Selection strategy, which diverges from traditional query selection in DETR distillation by segmenting queries based on their Generalized Intersection over Union (GIoU) with ground truth objects, thereby uncovering valuable hard-negative queries for distillation. Furthermore, we present the Knowledge Distillation via Query Selection for DETR (QSKD) framework, which incorporates Attention-Guided Feature Distillation (AGFD) and Local Alignment Prediction Distillation (LAPD). These components optimize the distillation process by focusing on the most informative aspects of the teacher model's intermediate features and output. Our comprehensive experimental evaluation of the MS-COCO dataset demonstrates the effectiveness of our approach, significantly improving average precision (AP) across various DETR architectures without incurring substantial computational costs. Specifically, the AP of Conditional DETR ResNet-18 increased from 35.8 to 39.9.