Abstract:Jailbreaking methods, which induce Multi-modal Large Language Models (MLLMs) to output harmful responses, raise significant safety concerns. Among these methods, gradient-based approaches, which use gradients to generate malicious prompts, have been widely studied due to their high success rates in white-box settings, where full access to the model is available. However, these methods have notable limitations: they require white-box access, which is not always feasible, and involve high memory usage. To address scenarios where white-box access is unavailable, attackers often resort to transfer attacks. In transfer attacks, malicious inputs generated using white-box models are applied to black-box models, but this typically results in reduced attack performance. To overcome these challenges, we propose Zer0-Jack, a method that bypasses the need for white-box access by leveraging zeroth-order optimization. We propose patch coordinate descent to efficiently generate malicious image inputs to directly attack black-box MLLMs, which significantly reduces memory usage further. Through extensive experiments, Zer0-Jack achieves a high attack success rate across various models, surpassing previous transfer-based methods and performing comparably with existing white-box jailbreak techniques. Notably, Zer0-Jack achieves a 95\% attack success rate on MiniGPT-4 with the Harmful Behaviors Multi-modal Dataset on a black-box setting, demonstrating its effectiveness. Additionally, we show that Zer0-Jack can directly attack commercial MLLMs such as GPT-4o. Codes are provided in the supplement.
Abstract:The integration of autonomous vehicles into urban traffic has great potential to improve efficiency by reducing congestion and optimizing traffic flow systematically. In this paper, we introduce CoMAL (Collaborative Multi-Agent LLMs), a framework designed to address the mixed-autonomy traffic problem by collaboration among autonomous vehicles to optimize traffic flow. CoMAL is built upon large language models, operating in an interactive traffic simulation environment. It utilizes a Perception Module to observe surrounding agents and a Memory Module to store strategies for each agent. The overall workflow includes a Collaboration Module that encourages autonomous vehicles to discuss the effective strategy and allocate roles, a reasoning engine to determine optimal behaviors based on assigned roles, and an Execution Module that controls vehicle actions using a hybrid approach combining rule-based models. Experimental results demonstrate that CoMAL achieves superior performance on the Flow benchmark. Additionally, we evaluate the impact of different language models and compare our framework with reinforcement learning approaches. It highlights the strong cooperative capability of LLM agents and presents a promising solution to the mixed-autonomy traffic challenge. The code is available at https://github.com/Hyan-Yao/CoMAL.
Abstract:The detection of bias in natural language processing (NLP) is a critical challenge, particularly with the increasing use of large language models (LLMs) in various domains. This paper introduces GUS-Net, an innovative approach to bias detection that focuses on three key types of biases: (G)eneralizations, (U)nfairness, and (S)tereotypes. GUS-Net leverages generative AI and automated agents to create a comprehensive synthetic dataset, enabling robust multi-label token classification. Our methodology enhances traditional bias detection methods by incorporating the contextual encodings of pre-trained models, resulting in improved accuracy and depth in identifying biased entities. Through extensive experiments, we demonstrate that GUS-Net outperforms state-of-the-art techniques, achieving superior performance in terms of accuracy, F1-score, and Hamming Loss. The findings highlight GUS-Net's effectiveness in capturing a wide range of biases across diverse contexts, making it a valuable tool for social bias detection in text. This study contributes to the ongoing efforts in NLP to address implicit bias, providing a pathway for future research and applications in various fields. The Jupyter notebooks used to create the dataset and model are available at: https://github.com/Ethical-Spectacle/fair-ly/tree/main/resources. Warning: This paper contains examples of harmful language, and reader discretion is recommended.
Abstract:Urban traffic is subject to disruptions that cause extended waiting time and safety issues at signalized intersections. While numerous studies have addressed the issue of intelligent traffic systems in the context of various disturbances, traffic signal malfunction, a common real-world occurrence with significant repercussions, has received comparatively limited attention. The primary objective of this research is to mitigate the adverse effects of traffic signal malfunction, such as traffic congestion and collision, by optimizing the control of neighboring functioning signals. To achieve this goal, this paper presents a novel traffic signal control framework (MalLight), which leverages an Influence-aware State Aggregation Module (ISAM) and an Influence-aware Reward Aggregation Module (IRAM) to achieve coordinated control of surrounding traffic signals. To the best of our knowledge, this study pioneers the application of a Reinforcement Learning(RL)-based approach to address the challenges posed by traffic signal malfunction. Empirical investigations conducted on real-world datasets substantiate the superior performance of our proposed methodology over conventional and deep learning-based alternatives in the presence of signal malfunction, with reduction of throughput alleviated by as much as 48.6$\%$.
Abstract:This paper introduces SynTraC, the first public image-based traffic signal control dataset, aimed at bridging the gap between simulated environments and real-world traffic management challenges. Unlike traditional datasets for traffic signal control which aim to provide simplified feature vectors like vehicle counts from traffic simulators, SynTraC provides real-style images from the CARLA simulator with annotated features, along with traffic signal states. This image-based dataset comes with diverse real-world scenarios, including varying weather and times of day. Additionally, SynTraC also provides different reward values for advanced traffic signal control algorithms like reinforcement learning. Experiments with SynTraC demonstrate that it is still an open challenge to image-based traffic signal control methods compared with feature-based control methods, indicating our dataset can further guide the development of future algorithms. The code for this paper can be found in \url{https://github.com/DaRL-LibSignal/SynTraC}.SynTraC
Abstract:Recent studies seek to provide Graph Neural Network (GNN) interpretability via multiple unsupervised learning models. Due to the scarcity of datasets, current methods easily suffer from learning bias. To solve this problem, we embed a Large Language Model (LLM) as knowledge into the GNN explanation network to avoid the learning bias problem. We inject LLM as a Bayesian Inference (BI) module to mitigate learning bias. The efficacy of the BI module has been proven both theoretically and experimentally. We conduct experiments on both synthetic and real-world datasets. The innovation of our work lies in two parts: 1. We provide a novel view of the possibility of an LLM functioning as a Bayesian inference to improve the performance of existing algorithms; 2. We are the first to discuss the learning bias issues in the GNN explanation problem.
Abstract:Heatwaves pose significant health risks, particularly due to prolonged exposure to high summer temperatures. Vulnerable groups, especially pedestrians and cyclists on sun-exposed sidewalks, motivate the development of a route planning method that incorporates somatosensory temperature effects through shade ratio consideration. This paper is the first to introduce a pipeline that utilizes segmentation foundation models to extract shaded areas from high-resolution satellite images. These areas are then integrated into a multi-layered road map, enabling users to customize routes based on a balance between distance and shade exposure, thereby enhancing comfort and health during outdoor activities. Specifically, we construct a graph-based representation of the road map, where links indicate connectivity and are updated with shade ratio data for dynamic route planning. This system is already implemented online, with a video demonstration, and will be specifically adapted to assist travelers during the 2024 Olympic Games in Paris.
Abstract:Currently, traffic signal control (TSC) methods based on reinforcement learning (RL) have proven superior to traditional methods. However, most RL methods face difficulties when applied in the real world due to three factors: input, output, and the cycle-flow relation. The industry's observable input is much more limited than simulation-based RL methods. For real-world solutions, only flow can be reliably collected, whereas common RL methods need more. For the output action, most RL methods focus on acyclic control, which real-world signal controllers do not support. Most importantly, industry standards require a consistent cycle-flow relationship: non-decreasing and different response strategies for low, medium, and high-level flows, which is ignored by the RL methods. To narrow the gap between RL methods and industry standards, we innovatively propose to use industry solutions to guide the RL agent. Specifically, we design behavior cloning and curriculum learning to guide the agent to mimic and meet industry requirements and, at the same time, leverage the power of exploration and exploitation in RL for better performance. We theoretically prove that such guidance can largely decrease the sample complexity to polynomials in the horizon when searching for an optimal policy. Our rigid experiments show that our method has good cycle-flow relation and superior performance.
Abstract:The Large language models (LLMs) have showcased superior capabilities in sophisticated tasks across various domains, stemming from basic question-answer (QA), they are nowadays used as decision assistants or explainers for unfamiliar content. However, they are not always correct due to the data sparsity in specific domain corpus, or the model's hallucination problems. Given this, how much should we trust the responses from LLMs? This paper presents a novel way to evaluate the uncertainty that captures the directional instability, by constructing a directional graph from entailment probabilities, and we innovatively conduct Random Walk Laplacian given the asymmetric property of a constructed directed graph, then the uncertainty is aggregated by the derived eigenvalues from the Laplacian process. We also provide a way to incorporate the existing work's semantics uncertainty with our proposed layer. Besides, this paper identifies the vagueness issues in the raw response set and proposes an augmentation approach to mitigate such a problem, we conducted extensive empirical experiments and demonstrated the superiority of our proposed solutions.
Abstract:Metacognition is the concept of reasoning about an agent's own internal processes and was originally introduced in the field of developmental psychology. In this position paper, we examine the concept of applying metacognition to artificial intelligence. We introduce a framework for understanding metacognitive artificial intelligence (AI) that we call TRAP: transparency, reasoning, adaptation, and perception. We discuss each of these aspects in-turn and explore how neurosymbolic AI (NSAI) can be leveraged to address challenges of metacognition.