Abstract:This paper introduces JuDGE (Judgment Document Generation Evaluation), a novel benchmark for evaluating the performance of judgment document generation in the Chinese legal system. We define the task as generating a complete legal judgment document from the given factual description of the case. To facilitate this benchmark, we construct a comprehensive dataset consisting of factual descriptions from real legal cases, paired with their corresponding full judgment documents, which serve as the ground truth for evaluating the quality of generated documents. This dataset is further augmented by two external legal corpora that provide additional legal knowledge for the task: one comprising statutes and regulations, and the other consisting of a large collection of past judgment documents. In collaboration with legal professionals, we establish a comprehensive automated evaluation framework to assess the quality of generated judgment documents across various dimensions. We evaluate various baseline approaches, including few-shot in-context learning, fine-tuning, and a multi-source retrieval-augmented generation (RAG) approach, using both general and legal-domain LLMs. The experimental results demonstrate that, while RAG approaches can effectively improve performance in this task, there is still substantial room for further improvement. All the codes and datasets are available at: https://github.com/oneal2000/JuDGE.
Abstract:Diffusion-based text-to-image models have demonstrated remarkable capabilities in generating realistic images, but they raise societal and ethical concerns, such as the creation of unsafe content. While concept editing is proposed to address these issues, they often struggle to balance the removal of unsafe concept with maintaining the model's general genera-tive capabilities. In this work, we propose ACE, a new editing method that enhances concept editing in diffusion models. ACE introduces a novel cross null-space projection approach to precisely erase unsafe concept while maintaining the model's ability to generate high-quality, semantically consistent images. Extensive experiments demonstrate that ACE significantly outperforms the advancing baselines,improving semantic consistency by 24.56% and image generation quality by 34.82% on average with only 1% of the time cost. These results highlight the practical utility of concept editing by mitigating its potential risks, paving the way for broader applications in the field. Code is avaliable at https://github.com/littlelittlenine/ACE-zero.git
Abstract:This paper proposes an online inference method of the stochastic gradient descent (SGD) with a constant learning rate for quantile loss functions with theoretical guarantees. Since the quantile loss function is neither smooth nor strongly convex, we view such SGD iterates as an irreducible and positive recurrent Markov chain. By leveraging this interpretation, we show the existence of a unique asymptotic stationary distribution, regardless of the arbitrarily fixed initialization. To characterize the exact form of this limiting distribution, we derive bounds for its moment generating function and tail probabilities, controlling over the first and second moments of SGD iterates. By these techniques, we prove that the stationary distribution converges to a Gaussian distribution as the constant learning rate $\eta\rightarrow0$. Our findings provide the first central limit theorem (CLT)-type theoretical guarantees for the last iterate of constant learning-rate SGD in non-smooth and non-strongly convex settings. We further propose a recursive algorithm to construct confidence intervals of SGD iterates in an online manner. Numerical studies demonstrate strong finite-sample performance of our proposed quantile estimator and inference method. The theoretical tools in this study are of independent interest to investigate general transition kernels in Markov chains.
Abstract:Large language models (LLMs) have been widely applied in question answering over scientific research papers. To enhance the professionalism and accuracy of responses, many studies employ external knowledge augmentation. However, existing structures of external knowledge in scientific literature often focus solely on either paper entities or domain concepts, neglecting the intrinsic connections between papers through shared domain concepts. This results in less comprehensive and specific answers when addressing questions that combine papers and concepts. To address this, we propose a novel knowledge graph framework that captures deep conceptual relations between academic papers, constructing a relational network via intra-paper semantic elements and inter-paper citation relations. Using a few-shot knowledge graph construction method based on LLM, we develop NLP-AKG, an academic knowledge graph for the NLP domain, by extracting 620,353 entities and 2,271,584 relations from 60,826 papers in ACL Anthology. Based on this, we propose a 'sub-graph community summary' method and validate its effectiveness on three NLP scientific literature question answering datasets.
Abstract:Long context understanding remains challenging for large language models due to their limited context windows. This paper presents Long Input Fine-Tuning (LIFT), a novel framework for long-context modeling that can improve the long-context performance of arbitrary (short-context) LLMs by dynamically adapting model parameters based on the long input. Importantly, LIFT, rather than endlessly extending the context window size to accommodate increasingly longer inputs in context, chooses to store and absorb the long input in parameter. By fine-tuning the long input into model parameters, LIFT allows short-context LLMs to answer questions even when the required information is not provided in the context during inference. Furthermore, to enhance LIFT performance while maintaining the original in-context learning (ICL) capabilities, we introduce Gated Memory, a specialized attention adapter that automatically balances long input memorization and ICL. We provide a comprehensive analysis of the strengths and limitations of LIFT on long context understanding, offering valuable directions for future research.
Abstract:Rapid industrial digitalization has created intricate cybersecurity demands that necessitate effective validation methods. While cyber ranges and simulation platforms are widely deployed, they frequently face limitations in scenario diversity and creation efficiency. In this paper, we present SpiderSim, a theoretical cybersecurity simulation platform enabling rapid and lightweight scenario generation for industrial digitalization security research. At its core, our platform introduces three key innovations: a structured framework for unified scenario modeling, a multi-agent collaboration mechanism for automated generation, and modular atomic security capabilities for flexible scenario composition. Extensive implementation trials across multiple industrial digitalization contexts, including marine ranch monitoring systems, validate our platform's capacity for broad scenario coverage with efficient generation processes. Built on solid theoretical foundations and released as open-source software, SpiderSim facilitates broader research and development in automated security testing for industrial digitalization.
Abstract:Large language models (LLMs) have shown remarkable capabilities in natural language processing. However, in knowledge graph question answering tasks (KGQA), there remains the issue of answering questions that require multi-hop reasoning. Existing methods rely on entity vector matching, but the purpose of the question is abstract and difficult to match with specific entities. As a result, it is difficult to establish reasoning paths to the purpose, which leads to information loss and redundancy. To address this issue, inspired by human reverse thinking, we propose Ontology-Guided Reverse Thinking (ORT), a novel framework that constructs reasoning paths from purposes back to conditions. ORT operates in three key phases: (1) using LLM to extract purpose labels and condition labels, (2) constructing label reasoning paths based on the KG ontology, and (3) using the label reasoning paths to guide knowledge retrieval. Experiments on the WebQSP and CWQ datasets show that ORT achieves state-of-the-art performance and significantly enhances the capability of LLMs for KGQA.
Abstract:LiDAR-camera extrinsic calibration (LCEC) is the core for data fusion in computer vision. Existing methods typically rely on customized calibration targets or fixed scene types, lacking the flexibility to handle variations in sensor data and environmental contexts. This paper introduces EdO-LCEC, the first environment-driven, online calibration approach that achieves human-like adaptability. Inspired by the human perceptual system, EdO-LCEC incorporates a generalizable scene discriminator to actively interpret environmental conditions, creating multiple virtual cameras that capture detailed spatial and textural information. To overcome cross-modal feature matching challenges between LiDAR and camera, we propose dual-path correspondence matching (DPCM), which leverages both structural and textural consistency to achieve reliable 3D-2D correspondences. Our approach formulates the calibration process as a spatial-temporal joint optimization problem, utilizing global constraints from multiple views and scenes to improve accuracy, particularly in sparse or partially overlapping sensor views. Extensive experiments on real-world datasets demonstrate that EdO-LCEC achieves state-of-the-art performance, providing reliable and precise calibration across diverse, challenging environments.
Abstract:Recent advancements in speech generation have been driven by the large-scale training datasets. However, current models fall short of capturing the spontaneity and variability inherent in real-world human speech, due to their reliance on audiobook datasets limited to formal read-aloud speech styles. To bridge this gap, we introduce Emilia-Pipe, an open-source preprocessing pipeline to extract high-quality training data from valuable yet underexplored in-the-wild data that capture spontaneous human speech in real-world contexts. By leveraging Emilia-Pipe, we construct Emilia, the first multilingual speech generation dataset derived from in-the-wild speech data. This dataset comprises over 101k hours of speech across six languages: English, Chinese, German, French, Japanese, and Korean. Besides, we expand Emilia to Emilia-Large, a dataset exceeding 216k hours, making it the largest open-source speech generation dataset available. Extensive experiments demonstrate that Emilia significantly outperforms traditional audiobook datasets in generating spontaneous and human-like speech, showcasing superior performance in capturing diverse speaker timbre and speaking styles of real-world human speech. Furthermore, this work underscores the importance of scaling dataset size to advance speech generation research and validates the effectiveness of Emilia for both multilingual and crosslingual speech generation.
Abstract:Amphion is an open-source toolkit for Audio, Music, and Speech Generation, designed to lower the entry barrier for junior researchers and engineers in these fields. It provides a versatile framework that supports a variety of generation tasks and models. In this report, we introduce Amphion v0.2, the second major release developed in 2024. This release features a 100K-hour open-source multilingual dataset, a robust data preparation pipeline, and novel models for tasks such as text-to-speech, audio coding, and voice conversion. Furthermore, the report includes multiple tutorials that guide users through the functionalities and usage of the newly released models.