Abstract:As Speech Language Models (SLMs) transition from personal devices to shared, multi-user environments such as smart homes, a new challenge emerges: the model is expected to distinguish between users to manage information flow appropriately. Without this capability, an SLM could reveal one user's confidential schedule to another, a privacy failure we term interactional privacy. Thus, the ability to generate speaker-aware responses becomes essential for SLM safe deployment. Current SLM benchmarks test dialogue ability but overlook speaker identity. Multi-speaker benchmarks check who said what without assessing whether SLMs adapt their responses. Privacy benchmarks focus on globally sensitive data (e.g., bank passwords) while neglecting contextual privacy-sensitive information (e.g., a user's private appointment). To address this gap, we introduce VoxPrivacy, the first benchmark designed to evaluate interactional privacy in SLMs. VoxPrivacy spans three tiers of increasing difficulty, from following direct secrecy commands to proactively protecting privacy. Our evaluation of nine SLMs on a 32-hour bilingual dataset reveals a widespread vulnerability: most open-source models perform close to random chance (around 50% accuracy) on conditional privacy decisions, while even strong closed-source systems fall short on proactive privacy inference. We further validate these findings on Real-VoxPrivacy, a human-recorded subset, confirming that failures observed on synthetic data persist in real speech. Finally, we demonstrate a viable path forward: by fine-tuning on a new 4,000-hour training set, we improve privacy-preserving abilities while maintaining robustness. To support future work, we release the VoxPrivacy benchmark, the large-scale training set, and the fine-tuned model to foster the development of safer and more context-aware SLMs.
Abstract:Multilingual speech foundation models such as Whisper are trained on web-scale data, where data for each language consists of a myriad of regional varieties. However, different regional varieties often employ different scripts to write the same language, rendering speech recognition output also subject to non-determinism in the output script. To mitigate this problem, we show that script is linearly encoded in the activation space of multilingual speech models, and that modifying activations at inference time enables direct control over output script. We find the addition of such script vectors to activations at test time can induce script change even in unconventional language-script pairings (e.g. Italian in Cyrillic and Japanese in Latin script). We apply this approach to inducing post-hoc control over the script of speech recognition output, where we observe competitive performance across all model sizes of Whisper.




Abstract:Neural vocoders and codecs reconstruct waveforms from acoustic representations, which directly impact the audio quality. Among existing methods, upsampling-based time-domain models are superior in both inference speed and synthesis quality, achieving state-of-the-art performance. Still, despite their success in producing perceptually natural sound, their synthesis fidelity remains limited due to the aliasing artifacts brought by the inadequately designed model architectures. In particular, the unconstrained nonlinear activation generates an infinite number of harmonics that exceed the Nyquist frequency, resulting in ``folded-back'' aliasing artifacts. The widely used upsampling layer, ConvTranspose, copies the mirrored low-frequency parts to fill the empty high-frequency region, resulting in ``mirrored'' aliasing artifacts. Meanwhile, the combination of its inherent periodicity and the mirrored DC bias also brings ``tonal artifact,'' resulting in constant-frequency ringing. This paper aims to solve these issues from a signal processing perspective. Specifically, we apply oversampling and anti-derivative anti-aliasing to the activation function to obtain its anti-aliased form, and replace the problematic ConvTranspose layer with resampling to avoid the ``tonal artifact'' and eliminate aliased components. Based on our proposed anti-aliased modules, we introduce Pupu-Vocoder and Pupu-Codec, and release high-quality pre-trained checkpoints to facilitate audio generation research. We build a test signal benchmark to illustrate the effectiveness of the anti-aliased modules, and conduct experiments on speech, singing voice, music, and audio to validate our proposed models. Experimental results confirm that our lightweight Pupu-Vocoder and Pupu-Codec models can easily outperform existing systems on singing voice, music, and audio, while achieving comparable performance on speech.




Abstract:Aligning large generative models with human feedback is a critical challenge. In speech synthesis, this is particularly pronounced due to the lack of a large-scale human preference dataset, which hinders the development of models that truly align with human perception. To address this, we introduce SpeechJudge, a comprehensive suite comprising a dataset, a benchmark, and a reward model centered on naturalness--one of the most fundamental subjective metrics for speech synthesis. First, we present SpeechJudge-Data, a large-scale human feedback corpus of 99K speech pairs. The dataset is constructed using a diverse set of advanced zero-shot text-to-speech (TTS) models across diverse speech styles and multiple languages, with human annotations for both intelligibility and naturalness preference. From this, we establish SpeechJudge-Eval, a challenging benchmark for speech naturalness judgment. Our evaluation reveals that existing metrics and AudioLLMs struggle with this task; the leading model, Gemini-2.5-Flash, achieves less than 70% agreement with human judgment, highlighting a significant gap for improvement. To bridge this gap, we develop SpeechJudge-GRM, a generative reward model (GRM) based on Qwen2.5-Omni-7B. It is trained on SpeechJudge-Data via a two-stage post-training process: Supervised Fine-Tuning (SFT) with Chain-of-Thought rationales followed by Reinforcement Learning (RL) with GRPO on challenging cases. On the SpeechJudge-Eval benchmark, the proposed SpeechJudge-GRM demonstrates superior performance, achieving 77.2% accuracy (and 79.4% after inference-time scaling @10) compared to a classic Bradley-Terry reward model (72.7%). Furthermore, SpeechJudge-GRM can be also employed as a reward function during the post-training of speech generation models to facilitate their alignment with human preferences.
Abstract:The evaluation of intelligibility for TTS has reached a bottleneck, as existing assessments heavily rely on word-by-word accuracy metrics such as WER, which fail to capture the complexity of real-world speech or reflect human comprehension needs. To address this, we propose Spoken-Passage Multiple-Choice Question Answering, a novel subjective approach evaluating the accuracy of key information in synthesized speech, and release SP-MCQA-Eval, an 8.76-hour news-style benchmark dataset for SP-MCQA evaluation. Our experiments reveal that low WER does not necessarily guarantee high key-information accuracy, exposing a gap between traditional metrics and practical intelligibility. SP-MCQA shows that even state-of-the-art (SOTA) models still lack robust text normalization and phonetic accuracy. This work underscores the urgent need for high-level, more life-like evaluation criteria now that many systems already excel at WER yet may fall short on real-world intelligibility.
Abstract:We present the findings of the latest iteration of the Singing Voice Conversion Challenge, a scientific event aiming to compare and understand different voice conversion systems in a controlled environment. Compared to previous iterations which solely focused on converting the singer identity, this year we also focused on converting the singing style of the singer. To create a controlled environment and thorough evaluations, we developed a new challenge database, introduced two tasks, open-sourced baselines, and conducted large-scale crowd-sourced listening tests and objective evaluations. The challenge was ran for two months and in total we evaluated 26 different systems. The results of the large-scale crowd-sourced listening test showed that top systems had comparable singer identity scores to ground truth samples. However, modeling the singing style and consequently achieving high naturalness still remains a challenge in this task, primarily due to the difficulty in modeling dynamic information in breathy, glissando, and vibrato singing styles.




Abstract:Singing Accompaniment Generation (SAG) is the process of generating instrumental music for a given clean vocal input. However, existing SAG techniques use source-separated vocals as input and overfit to separation artifacts. This creates a critical train-test mismatch, leading to failure on clean, real-world vocal inputs. We introduce AnyAccomp, a framework that resolves this by decoupling accompaniment generation from source-dependent artifacts. AnyAccomp first employs a quantized melodic bottleneck, using a chromagram and a VQ-VAE to extract a discrete and timbre-invariant representation of the core melody. A subsequent flow-matching model then generates the accompaniment conditioned on these robust codes. Experiments show AnyAccomp achieves competitive performance on separated-vocal benchmarks while significantly outperforming baselines on generalization test sets of clean studio vocals and, notably, solo instrumental tracks. This demonstrates a qualitative leap in generalization, enabling robust accompaniment for instruments - a task where existing models completely fail - and paving the way for more versatile music co-creation tools. Demo audio and code: https://anyaccomp.github.io

Abstract:Real-world speech communication is often hampered by a variety of distortions that degrade quality and intelligibility. While many speech enhancement algorithms target specific degradations like noise or reverberation, they often fall short in realistic scenarios where multiple distortions co-exist and interact. To spur research in this area, we introduce the Speech Restoration Challenge as part of the China Computer Federation (CCF) Advanced Audio Technology Competition (AATC) 2025. This challenge focuses on restoring speech signals affected by a composite of three degradation types: (1) complex acoustic degradations including non-stationary noise and reverberation; (2) signal-chain artifacts such as those from MP3 compression; and (3) secondary artifacts introduced by other pre-processing enhancement models. We describe the challenge's background, the design of the task, the comprehensive dataset creation methodology, and the detailed evaluation protocol, which assesses both objective performance and model complexity. Homepage: https://ccf-aatc.org.cn/.




Abstract:Automatic Speaker Verification (ASV) systems can be used for voice-enabled applications for identity verification. However, recent studies have exposed these systems' vulnerabilities to both over-the-line (OTL) and over-the-air (OTA) adversarial attacks. Although various detection methods have been proposed to counter these threats, they have not been thoroughly tested due to the lack of a comprehensive data set. To address this gap, we developed the AdvSV 2.0 dataset, which contains 628k samples with a total duration of 800 hours. This dataset incorporates classical adversarial attack algorithms, ASV systems, and encompasses both OTL and OTA scenarios. Furthermore, we introduce a novel adversarial attack method based on a Neural Replay Simulator (NRS), which enhances the potency of adversarial OTA attacks, thereby presenting a greater threat to ASV systems. To defend against these attacks, we propose CODA-OCC, a contrastive learning approach within the one-class classification framework. Experimental results show that CODA-OCC achieves an EER of 11.2% and an AUC of 0.95 on the AdvSV 2.0 dataset, outperforming several state-of-the-art detection methods.
Abstract:With the rapid development of deepfake technology, simply making a binary judgment of true or false on audio is no longer sufficient to meet practical needs. Accurately determining the specific deepfake method has become crucial. This paper introduces the Audio Deepfake Verification (ADV) task, effectively addressing the limitations of existing deepfake source tracing methods in closed-set scenarios, aiming to achieve open-set deepfake source tracing. Meanwhile, the Audity dual-branch architecture is proposed, extracting deepfake features from two dimensions: audio structure and generation artifacts. Experimental results show that the dual-branch Audity architecture outperforms any single-branch configuration, and it can simultaneously achieve excellent performance in both deepfake detection and verification tasks.