Abstract:We propose Neural-FST Class Language Model (NFCLM) for end-to-end speech recognition, a novel method that combines neural network language models (NNLMs) and finite state transducers (FSTs) in a mathematically consistent framework. Our method utilizes a background NNLM which models generic background text together with a collection of domain-specific entities modeled as individual FSTs. Each output token is generated by a mixture of these components; the mixture weights are estimated with a separately trained neural decider. We show that NFCLM significantly outperforms NNLM by 15.8% relative in terms of Word Error Rate. NFCLM achieves similar performance as traditional NNLM and FST shallow fusion while being less prone to overbiasing and 12 times more compact, making it more suitable for on-device usage.
Abstract:Given $iid$ observations from an unknown absolute continuous distribution defined on some domain $\Omega$, we propose a nonparametric method to learn a piecewise constant function to approximate the underlying probability density function. Our density estimate is a piecewise constant function defined on a binary partition of $\Omega$. The key ingredient of the algorithm is to use discrepancy, a concept originates from Quasi Monte Carlo analysis, to control the partition process. The resulting algorithm is simple, efficient, and has a provable convergence rate. We empirically demonstrate its efficiency as a density estimation method. We present its applications on a wide range of tasks, including finding good initializations for k-means.