Abstract:Despite their remarkable performance, the development of Large Language Models (LLMs) faces a critical challenge in scalable oversight: providing effective feedback for tasks where human evaluation is difficult or where LLMs outperform humans. While there is growing interest in using LLMs for critique, current approaches still rely on human annotations or more powerful models, leaving the issue of enhancing critique capabilities without external supervision unresolved. We introduce SCRIT (Self-evolving CRITic), a framework that enables genuine self-evolution of critique abilities. Technically, SCRIT self-improves by training on synthetic data, generated by a contrastive-based self-critic that uses reference solutions for step-by-step critique, and a self-validation mechanism that ensures critique quality through correction outcomes. Implemented with Qwen2.5-72B-Instruct, one of the most powerful LLMs, SCRIT achieves up to a 10.3\% improvement on critique-correction and error identification benchmarks. Our analysis reveals that SCRIT's performance scales positively with data and model size, outperforms alternative approaches, and benefits critically from its self-validation component.
Abstract:Large language models rely on Supervised Fine-Tuning (SFT) to specialize in downstream tasks. Cross Entropy (CE) loss is the de facto choice in SFT, but it often leads to overfitting and limited output diversity due to its aggressive updates to the data distribution. This paper aim to address these issues by introducing the maximum entropy principle, which favors models with flatter distributions that still effectively capture the data. Specifically, we develop a new distribution matching method called GEM, which solves reverse Kullback-Leibler divergence minimization with an entropy regularizer. For the SFT of Llama-3-8B models, GEM outperforms CE in several aspects. First, when applied to the UltraFeedback dataset to develop general instruction-following abilities, GEM exhibits reduced overfitting, evidenced by lower perplexity and better performance on the IFEval benchmark. Furthermore, GEM enhances output diversity, leading to performance gains of up to 7 points on math reasoning and code generation tasks using best-of-n sampling, even without domain-specific data. Second, when fine-tuning with domain-specific datasets for math reasoning and code generation, GEM also shows less overfitting and improvements of up to 10 points compared with CE.
Abstract:We propose Adam-mini, an optimizer that achieves on-par or better performance than AdamW with 45% to 50% less memory footprint. Adam-mini reduces memory by cutting down the learning rate resources in Adam (i.e., $1/\sqrt{v}$). We find that $\geq$ 90% of these learning rates in $v$ could be harmlessly removed if we (1) carefully partition the parameters into blocks following our proposed principle on Hessian structure; (2) assign a single but good learning rate to each parameter block. We further find that, for each of these parameter blocks, there exists a single high-quality learning rate that can outperform Adam, provided that sufficient resources are available to search it out. We then provide one cost-effective way to find good learning rates and propose Adam-mini. Empirically, we verify that Adam-mini performs on par or better than AdamW on various language models sized from 125M to 7B for pre-training, supervised fine-tuning, and RLHF. The reduced memory footprint of Adam-mini also alleviates communication overheads among GPUs and CPUs, thereby increasing throughput. For instance, Adam-mini achieves 49.6% higher throughput than AdamW when pre-training Llama2-7B on $2\times$ A800-80GB GPUs, which saves 33% wall-clock time for pre-training.
Abstract:Large language models (LLMs) have catalyzed a paradigm shift in natural language processing, yet their limited controllability poses a significant challenge for downstream applications. We aim to address this by drawing inspiration from the neural mechanisms of the human brain, specifically Broca's and Wernicke's areas, which are crucial for language generation and comprehension, respectively. In particular, Broca's area receives cognitive decision signals from Wernicke's area, treating the language generation as an intricate decision-making process, which differs from the fully auto-regressive language generation of existing LLMs. In a similar vein, our proposed system, the BWArea model, conceptualizes language generation as a decision-making task. This model has three components: a language world model, an inverse dynamics model, and a cognitive policy. Like Wernicke's area, the inverse dynamics model is designed to deduce the underlying cognitive intentions, or latent actions, behind each token. The BWArea model is amenable to both pre-training and fine-tuning like existing LLMs. With 30B clean pre-training tokens, we have trained a BWArea model, which achieves competitive performance with LLMs of equal size (1B parameters). Unlike fully auto-regressive LLMs, its pre-training performance does not degenerate if dirty data unintentionally appears. This shows the advantage of a decomposed structure of BWArea model in reducing efforts in laborious data selection and labeling. Finally, we reveal that the BWArea model offers enhanced controllability via fine-tuning the cognitive policy with downstream reward metrics, thereby facilitating alignment with greater simplicity. On 9 out of 10 tasks from two suites, TextWorld and BigBench Hard, our method shows superior performance to auto-regressive LLMs.
Abstract:Accurately aligning large language models (LLMs) with human preferences is crucial for informing fair, economically sound, and statistically efficient decision-making processes. However, we argue that reinforcement learning from human feedback (RLHF) -- the predominant approach for aligning LLMs with human preferences through a reward model -- suffers from an inherent algorithmic bias due to its Kullback--Leibler-based regularization in optimization. In extreme cases, this bias could lead to a phenomenon we term preference collapse, where minority preferences are virtually disregarded. To mitigate this algorithmic bias, we introduce preference matching (PM) RLHF, a novel approach that provably aligns LLMs with the preference distribution of the reward model under the Bradley--Terry--Luce/Plackett--Luce model. Central to our approach is a PM regularizer that takes the form of the negative logarithm of the LLM's policy probability distribution over responses, which helps the LLM balance response diversification and reward maximization. Notably, we obtain this regularizer by solving an ordinary differential equation that is necessary for the PM property. For practical implementation, we introduce a conditional variant of PM RLHF that is tailored to natural language generation. Finally, we empirically validate the effectiveness of conditional PM RLHF through experiments on the OPT-1.3B and Llama-2-7B models, demonstrating a 29% to 41% improvement in alignment with human preferences, as measured by a certain metric, compared to standard RLHF.
Abstract:SGD performs worse than Adam by a significant margin on Transformers, but the reason remains unclear. In this work, we provide an explanation of SGD's failure on Transformers through the lens of Hessian: (i) Transformers are ``heterogeneous'': the Hessian spectrum across parameter blocks vary dramatically, a phenomenon we call ``block heterogeneity"; (ii) Heterogeneity hampers SGD: SGD performs badly on problems with block heterogeneity. To validate that heterogeneity hampers SGD, we check various Transformers, CNNs, MLPs, and quadratic problems, and find that SGD works well on problems without block heterogeneity but performs badly when the heterogeneity exists. Our initial theoretical analysis indicates that SGD fails because it applies one single learning rate for all blocks, which cannot handle the heterogeneity among blocks. The failure could be rescued if we could assign different learning rates across blocks, as designed in Adam.
Abstract:Aligning intelligent agents with human preferences and values is important. This paper examines two popular alignment methods: Direct Preference Optimization (DPO) and Reward-Model-Based Policy Optimization (RMB-PO). A variant of RMB-PO, referred to as RMB-PO+ is also considered. These methods, either explicitly or implicitly, learn a reward model from preference data and differ in the data used for policy optimization to unlock the generalization ability of the reward model. In particular, compared with DPO, RMB-PO additionally uses policy-generated data, and RMB-PO+ further leverages new, preference-free data. We examine the impact of such out-of-preference data. Our study, conducted through controlled and synthetic experiments, demonstrates that DPO performs poorly, whereas RMB-PO+ performs the best. In particular, even when providing the policy model with a good feature representation, we find that policy optimization with adequate out-of-preference data significantly improves performance by harnessing the reward model's generalization capabilities.
Abstract:Alignment is of critical importance for training large language models (LLMs). The predominant strategy to address this is through Reinforcement Learning from Human Feedback (RLHF), where PPO serves as the de-facto algorithm. Yet, PPO is known to suffer from computational inefficiency, which is a challenge that this paper aims to address. We identify three important properties in RLHF tasks: fast simulation, deterministic transitions, and trajectory-level rewards, which are not leveraged in PPO. Based on such observations, we develop a new algorithm tailored for RLHF, called ReMax. The algorithm design of ReMax is built on a celebrated algorithm REINFORCE but is equipped with a new variance-reduction technique. Our method has three-fold advantages over PPO: first, ReMax is simple to implement and removes many hyper-parameters in PPO, which are scale-sensitive and laborious to tune. Second, ReMax saves about 50% memory usage in principle. As a result, PPO runs out-of-memory when fine-tuning a Llama2 (7B) model on 8xA100-40GB GPUs, whereas ReMax can afford training. This memory improvement is achieved by removing the value model in PPO. Third, based on our calculations, we find that even assuming PPO can afford the training of Llama2 (7B), it would still run about 2x slower than ReMax. This is due to the computational overhead of the value model, which does not exist in ReMax. Importantly, the above computational improvements do not sacrifice the performance. We hypothesize these advantages can be maintained in larger-scaled models. Our implementation of ReMax is available at https://github.com/liziniu/ReMax
Abstract:Imitation learning (IL) has proven to be an effective method for learning good policies from expert demonstrations. Adversarial imitation learning (AIL), a subset of IL methods, is particularly promising, but its theoretical foundation in the presence of unknown transitions has yet to be fully developed. This paper explores the theoretical underpinnings of AIL in this context, where the stochastic and uncertain nature of environment transitions presents a challenge. We examine the expert sample complexity and interaction complexity required to recover good policies. To this end, we establish a framework connecting reward-free exploration and AIL, and propose an algorithm, MB-TAIL, that achieves the minimax optimal expert sample complexity of $\widetilde{O} (H^{3/2} |S|/\varepsilon)$ and interaction complexity of $\widetilde{O} (H^{3} |S|^2 |A|/\varepsilon^2)$. Here, $H$ represents the planning horizon, $|S|$ is the state space size, $|A|$ is the action space size, and $\varepsilon$ is the desired imitation gap. MB-TAIL is the first algorithm to achieve this level of expert sample complexity in the unknown transition setting and improves upon the interaction complexity of the best-known algorithm, OAL, by $O(H)$. Additionally, we demonstrate the generalization ability of MB-TAIL by extending it to the function approximation setting and proving that it can achieve expert sample and interaction complexity independent of $|S|$
Abstract:Reinforcement learning (RL) has shown promise for decision-making tasks in real-world applications. One practical framework involves training parameterized policy models from an offline dataset and subsequently deploying them in an online environment. However, this approach can be risky since the offline training may not be perfect, leading to poor performance of the RL models that may take dangerous actions. To address this issue, we propose an alternative framework that involves a human supervising the RL models and providing additional feedback in the online deployment phase. We formalize this online deployment problem and develop two approaches. The first approach uses model selection and the upper confidence bound algorithm to adaptively select a model to deploy from a candidate set of trained offline RL models. The second approach involves fine-tuning the model in the online deployment phase when a supervision signal arrives. We demonstrate the effectiveness of these approaches for robot locomotion control and traffic light control tasks through empirical validation.