Tsinghua University




Abstract:Recently, reinforcement learning (RL) has become a common choice in enhancing the reasoning capabilities of vision-language models (VLMs). Considering existing RL-based finetuning methods, entropy intervention turns out to be an effective way to benefit exploratory ability, thereby improving policy performance. Notably, most existing studies intervene in entropy by simply controlling the update of specific tokens during policy optimization of RL. They ignore the entropy intervention during the RL sampling that can boost the performance of GRPO by improving the diversity of responses. In this paper, we propose Selective-adversarial Entropy Intervention, namely SaEI, which enhances policy entropy by distorting the visual input with the token-selective adversarial objective coming from the entropy of sampled responses. Specifically, we first propose entropy-guided adversarial sampling (EgAS) that formulates the entropy of sampled responses as an adversarial objective. Then, the corresponding adversarial gradient can be used to attack the visual input for producing adversarial samples, allowing the policy model to explore a larger answer space during RL sampling. Then, we propose token-selective entropy computation (TsEC) to maximize the effectiveness of adversarial attack in EgAS without distorting factual knowledge within VLMs. Extensive experiments on both in-domain and out-of-domain datasets show that our proposed method can greatly improve policy exploration via entropy intervention, to boost reasoning capabilities. Code will be released once the paper is accepted.
Abstract:In modern software development workflows, the open-source software supply chain contributes significantly to efficient and convenient engineering practices. With increasing system complexity, using open-source software as third-party dependencies has become a common practice. However, the lack of maintenance for underlying dependencies and insufficient community auditing create challenges in ensuring source code security and the legitimacy of repository maintainers, especially under high-stealthy backdoor attacks exemplified by the XZ-Util incident. To address these problems, we propose a fine-grained project evaluation framework for backdoor risk assessment in open-source software. The framework models stealthy backdoor attacks from the viewpoint of the attacker and defines targeted metrics for each attack stage. In addition, to overcome the limitations of static analysis in assessing the reliability of repository maintenance activities such as irregular committer privilege escalation and limited participation in reviews, the framework uses large language models (LLMs) to conduct semantic evaluation of code repositories without relying on manually crafted patterns. The framework is evaluated on sixty six high-priority packages in the Debian ecosystem. The experimental results indicate that the current open-source software supply chain is exposed to various security risks.




Abstract:Large transformer models, trained on diverse datasets, have demonstrated impressive few-shot performance on previously unseen tasks without requiring parameter updates. This capability has also been explored in Reinforcement Learning (RL), where agents interact with the environment to retrieve context and maximize cumulative rewards, showcasing strong adaptability in complex settings. However, in cooperative Multi-Agent Reinforcement Learning (MARL), where agents must coordinate toward a shared goal, decentralized policy deployment can lead to mismatches in task alignment and reward assignment, limiting the efficiency of policy adaptation. To address this challenge, we introduce Multi-agent In-context Coordination via Decentralized Memory Retrieval (MAICC), a novel approach designed to enhance coordination by fast adaptation. Our method involves training a centralized embedding model to capture fine-grained trajectory representations, followed by decentralized models that approximate the centralized one to obtain team-level task information. Based on the learned embeddings, relevant trajectories are retrieved as context, which, combined with the agents' current sub-trajectories, inform decision-making. During decentralized execution, we introduce a novel memory mechanism that effectively balances test-time online data with offline memory. Based on the constructed memory, we propose a hybrid utility score that incorporates both individual- and team-level returns, ensuring credit assignment across agents. Extensive experiments on cooperative MARL benchmarks, including Level-Based Foraging (LBF) and SMAC (v1/v2), show that MAICC enables faster adaptation to unseen tasks compared to existing methods. Code is available at https://github.com/LAMDA-RL/MAICC.
Abstract:Vision-Language Models (VLMs) excel in diverse multimodal tasks. However, user requirements vary across scenarios, which can be categorized into fast response, high-quality output, and low energy consumption. Relying solely on large models deployed in the cloud for all queries often leads to high latency and energy cost, while small models deployed on edge devices are capable of handling simpler tasks with low latency and energy cost. To fully leverage the strengths of both large and small models, we propose ECVL-ROUTER, the first scenario-aware routing framework for VLMs. Our approach introduces a new routing strategy and evaluation metrics that dynamically select the appropriate model for each query based on user requirements, maximizing overall utility. We also construct a multimodal response-quality dataset tailored for router training and validate the approach through extensive experiments. Results show that our approach successfully routes over 80\% of queries to the small model while incurring less than 10\% drop in problem solving probability.




Abstract:Large Language Model (LLM) agents have demonstrated remarkable capabilities in organizing and executing complex tasks, and many such agents are now widely used in various application scenarios. However, developing these agents requires carefully designed workflows, carefully crafted prompts, and iterative tuning, which requires LLM techniques and domain-specific expertise. These hand-crafted limitations hinder the scalability and cost-effectiveness of LLM agents across a wide range of industries. To address these challenges, we propose \textbf{InfiAgent}, a Pyramid-like DAG-based Multi-Agent Framework that can be applied to \textbf{infi}nite scenarios, which introduces several key innovations: a generalized "agent-as-a-tool" mechanism that automatically decomposes complex agents into hierarchical multi-agent systems; a dual-audit mechanism that ensures the quality and stability of task completion; an agent routing function that enables efficient task-agent matching; and an agent self-evolution mechanism that autonomously restructures the agent DAG based on new tasks, poor performance, or optimization opportunities. Furthermore, InfiAgent's atomic task design supports agent parallelism, significantly improving execution efficiency. This framework evolves into a versatile pyramid-like multi-agent system capable of solving a wide range of problems. Evaluations on multiple benchmarks demonstrate that InfiAgent achieves 9.9\% higher performance compared to ADAS (similar auto-generated agent framework), while a case study of the AI research assistant InfiHelper shows that it generates scientific papers that have received recognition from human reviewers at top-tier IEEE conferences.
Abstract:Reward design remains a critical bottleneck in visual reinforcement learning (RL) for robotic manipulation. In simulated environments, rewards are conventionally designed based on the distance to a target position. However, such precise positional information is often unavailable in real-world visual settings due to sensory and perceptual limitations. In this study, we propose a method that implicitly infers spatial distances through keypoints extracted from images. Building on this, we introduce Reward Learning with Anticipation Model (ReLAM), a novel framework that automatically generates dense, structured rewards from action-free video demonstrations. ReLAM first learns an anticipation model that serves as a planner and proposes intermediate keypoint-based subgoals on the optimal path to the final goal, creating a structured learning curriculum directly aligned with the task's geometric objectives. Based on the anticipated subgoals, a continuous reward signal is provided to train a low-level, goal-conditioned policy under the hierarchical reinforcement learning (HRL) framework with provable sub-optimality bound. Extensive experiments on complex, long-horizon manipulation tasks show that ReLAM significantly accelerates learning and achieves superior performance compared to state-of-the-art methods.
Abstract:Personalizing Automatic Speech Recognition (ASR) for dysarthric speech is crucial but challenging due to training and storing of individual user adapters. We propose a hybrid meta-training method for a single model, excelling in zero-shot and few-shot on-the-fly personalization via in-context learning (ICL). Measuring Word Error Rate (WER) on state-of-the-art subsets, the model achieves 13.9% WER on Euphonia which surpasses speaker-independent baselines (17.5% WER) and rivals user-specific personalized models. On SAP Test 1, its 5.3% WER significantly bests the 8% from even personalized adapters. We also demonstrate the importance of example curation, where an oracle text-similarity method shows 5 curated examples can achieve performance similar to 19 randomly selected ones, highlighting a key area for future efficiency gains. Finally, we conduct data ablations to measure the data efficiency of this approach. This work presents a practical, scalable, and personalized solution.
Abstract:Tongue imaging serves as a valuable diagnostic tool, particularly in Traditional Chinese Medicine (TCM). The quality of tongue surface segmentation significantly affects the accuracy of tongue image classification and subsequent diagnosis in intelligent tongue diagnosis systems. However, existing research on tongue image segmentation faces notable limitations, and there is a lack of robust and user-friendly segmentation tools. This paper proposes a tongue image segmentation model (TOM) based on multi-teacher knowledge distillation. By incorporating a novel diffusion-based data augmentation method, we enhanced the generalization ability of the segmentation model while reducing its parameter size. Notably, after reducing the parameter count by 96.6% compared to the teacher models, the student model still achieves an impressive segmentation performance of 95.22% mIoU. Furthermore, we packaged and deployed the trained model as both an online and offline segmentation tool (available at https://itongue.cn/), allowing TCM practitioners and researchers to use it without any programming experience. We also present a case study on TCM constitution classification using segmented tongue patches. Experimental results demonstrate that training with tongue patches yields higher classification performance and better interpretability than original tongue images. To our knowledge, this is the first open-source and freely available tongue image segmentation tool.




Abstract:We introduce CCI4.0, a large-scale bilingual pre-training dataset engineered for superior data quality and diverse human-like reasoning trajectory. CCI4.0 occupies roughly $35$ TB of disk space and comprises two sub-datasets: CCI4.0-M2-Base and CCI4.0-M2-CoT. CCI4.0-M2-Base combines a $5.2$ TB carefully curated Chinese web corpus, a $22.5$ TB English subset from Nemotron-CC, and diverse sources from math, wiki, arxiv, and code. Although these data are mostly sourced from well-processed datasets, the quality standards of various domains are dynamic and require extensive expert experience and labor to process. So, we propose a novel pipeline justifying data quality mainly based on models through two-stage deduplication, multiclassifier quality scoring, and domain-aware fluency filtering. We extract $4.5$ billion pieces of CoT(Chain-of-Thought) templates, named CCI4.0-M2-CoT. Differing from the distillation of CoT from larger models, our proposed staged CoT extraction exemplifies diverse reasoning patterns and significantly decreases the possibility of hallucination. Empirical evaluations demonstrate that LLMs pre-trained in CCI4.0 benefit from cleaner, more reliable training signals, yielding consistent improvements in downstream tasks, especially in math and code reflection tasks. Our results underscore the critical role of rigorous data curation and human thinking templates in advancing LLM performance, shedding some light on automatically processing pretraining corpora.
Abstract:Traditional Chinese Medicine (TCM), as an effective alternative medicine, has been receiving increasing attention. In recent years, the rapid development of large language models (LLMs) tailored for TCM has underscored the need for an objective and comprehensive evaluation framework to assess their performance on real-world tasks. However, existing evaluation datasets are limited in scope and primarily text-based, lacking a unified and standardized multimodal question-answering (QA) benchmark. To address this issue, we introduce TCM-Ladder, the first multimodal QA dataset specifically designed for evaluating large TCM language models. The dataset spans multiple core disciplines of TCM, including fundamental theory, diagnostics, herbal formulas, internal medicine, surgery, pharmacognosy, and pediatrics. In addition to textual content, TCM-Ladder incorporates various modalities such as images and videos. The datasets were constructed using a combination of automated and manual filtering processes and comprise 52,000+ questions in total. These questions include single-choice, multiple-choice, fill-in-the-blank, diagnostic dialogue, and visual comprehension tasks. We trained a reasoning model on TCM-Ladder and conducted comparative experiments against 9 state-of-the-art general domain and 5 leading TCM-specific LLMs to evaluate their performance on the datasets. Moreover, we propose Ladder-Score, an evaluation method specifically designed for TCM question answering that effectively assesses answer quality regarding terminology usage and semantic expression. To our knowledge, this is the first work to evaluate mainstream general domain and TCM-specific LLMs on a unified multimodal benchmark. The datasets and leaderboard are publicly available at https://tcmladder.com or https://54.211.107.106 and will be continuously updated.