Abstract:Diffusion-based Video Super-Resolution (VSR) is renowned for generating perceptually realistic videos, yet it grapples with maintaining detail consistency across frames due to stochastic fluctuations. The traditional approach of pixel-level alignment is ineffective for diffusion-processed frames because of iterative disruptions. To overcome this, we introduce SeeClear--a novel VSR framework leveraging conditional video generation, orchestrated by instance-centric and channel-wise semantic controls. This framework integrates a Semantic Distiller and a Pixel Condenser, which synergize to extract and upscale semantic details from low-resolution frames. The Instance-Centric Alignment Module (InCAM) utilizes video-clip-wise tokens to dynamically relate pixels within and across frames, enhancing coherency. Additionally, the Channel-wise Texture Aggregation Memory (CaTeGory) infuses extrinsic knowledge, capitalizing on long-standing semantic textures. Our method also innovates the blurring diffusion process with the ResShift mechanism, finely balancing between sharpness and diffusion effects. Comprehensive experiments confirm our framework's advantage over state-of-the-art diffusion-based VSR techniques. The code is available: https://github.com/Tang1705/SeeClear-NeurIPS24.
Abstract:This paper presents a general scheme for enhancing the convergence and performance of DETR (DEtection TRansformer). We investigate the slow convergence problem in transformers from a new perspective, suggesting that it arises from the self-attention that introduces no structural bias over inputs. To address this issue, we explore incorporating position relation prior as attention bias to augment object detection, following the verification of its statistical significance using a proposed quantitative macroscopic correlation (MC) metric. Our approach, termed Relation-DETR, introduces an encoder to construct position relation embeddings for progressive attention refinement, which further extends the traditional streaming pipeline of DETR into a contrastive relation pipeline to address the conflicts between non-duplicate predictions and positive supervision. Extensive experiments on both generic and task-specific datasets demonstrate the effectiveness of our approach. Under the same configurations, Relation-DETR achieves a significant improvement (+2.0% AP compared to DINO), state-of-the-art performance (51.7% AP for 1x and 52.1% AP for 2x settings), and a remarkably faster convergence speed (over 40% AP with only 2 training epochs) than existing DETR detectors on COCO val2017. Moreover, the proposed relation encoder serves as a universal plug-in-and-play component, bringing clear improvements for theoretically any DETR-like methods. Furthermore, we introduce a class-agnostic detection dataset, SA-Det-100k. The experimental results on the dataset illustrate that the proposed explicit position relation achieves a clear improvement of 1.3% AP, highlighting its potential towards universal object detection. The code and dataset are available at https://github.com/xiuqhou/Relation-DETR.
Abstract:The primary objective of Multi-Agent Pathfinding (MAPF) is to plan efficient and conflict-free paths for all agents. Traditional multi-agent path planning algorithms struggle to achieve efficient distributed path planning for multiple agents. In contrast, Multi-Agent Reinforcement Learning (MARL) has been demonstrated as an effective approach to achieve this objective. By modeling the MAPF problem as a MARL problem, agents can achieve efficient path planning and collision avoidance through distributed strategies under partial observation. However, MARL strategies often lack cooperation among agents due to the absence of global information, which subsequently leads to reduced MAPF efficiency. To address this challenge, this letter introduces a unique reward shaping technique based on Independent Q-Learning (IQL). The aim of this method is to evaluate the influence of one agent on its neighbors and integrate such an interaction into the reward function, leading to active cooperation among agents. This reward shaping method facilitates cooperation among agents while operating in a distributed manner. The proposed approach has been evaluated through experiments across various scenarios with different scales and agent counts. The results are compared with those from other state-of-the-art (SOTA) planners. The evidence suggests that the approach proposed in this letter parallels other planners in numerous aspects, and outperforms them in scenarios featuring a large number of agents.
Abstract:Video compression aims to reconstruct seamless frames by encoding the motion and residual information from existing frames. Previous neural video compression methods necessitate distinct codecs for three types of frames (I-frame, P-frame and B-frame), which hinders a unified approach and generalization across different video contexts. Intra-codec techniques lack the advanced Motion Estimation and Motion Compensation (MEMC) found in inter-codec, leading to fragmented frameworks lacking uniformity. Our proposed \textbf{Intra- \& Inter-frame Video Compression (I$^2$VC)} framework employs a single spatio-temporal codec that guides feature compression rates according to content importance. This unified codec transforms the dependence across frames into a conditional coding scheme, thus integrating intra- and inter-frame compression into one cohesive strategy. Given the absence of explicit motion data, achieving competent inter-frame compression with only a conditional codec poses a challenge. To resolve this, our approach includes an implicit inter-frame alignment mechanism. With the pre-trained diffusion denoising process, the utilization of a diffusion-inverted reference feature rather than random noise supports the initial compression state. This process allows for selective denoising of motion-rich regions based on decoded features, facilitating accurate alignment without the need for MEMC. Our experimental findings, across various compression configurations (AI, LD and RA) and frame types, prove that I$^2$VC outperforms the state-of-the-art perceptual learned codecs. Impressively, it exhibits a 58.4\% enhancement in perceptual reconstruction performance when benchmarked against the H.266/VVC standard (VTM). Official implementation can be found at \href{https://github.com/GYukai/I2VC}{https://github.com/GYukai/I2VC}
Abstract:DETR-like methods have significantly increased detection performance in an end-to-end manner. The mainstream two-stage frameworks of them perform dense self-attention and select a fraction of queries for sparse cross-attention, which is proven effective for improving performance but also introduces a heavy computational burden and high dependence on stable query selection. This paper demonstrates that suboptimal two-stage selection strategies result in scale bias and redundancy due to the mismatch between selected queries and objects in two-stage initialization. To address these issues, we propose hierarchical salience filtering refinement, which performs transformer encoding only on filtered discriminative queries, for a better trade-off between computational efficiency and precision. The filtering process overcomes scale bias through a novel scale-independent salience supervision. To compensate for the semantic misalignment among queries, we introduce elaborate query refinement modules for stable two-stage initialization. Based on above improvements, the proposed Salience DETR achieves significant improvements of +4.0% AP, +0.2% AP, +4.4% AP on three challenging task-specific detection datasets, as well as 49.2% AP on COCO 2017 with less FLOPs. The code is available at https://github.com/xiuqhou/Salience-DETR.
Abstract:As a critical clue of video super-resolution (VSR), inter-frame alignment significantly impacts overall performance. However, accurate pixel-level alignment is a challenging task due to the intricate motion interweaving in the video. In response to this issue, we introduce a novel paradigm for VSR named Semantic Lens, predicated on semantic priors drawn from degraded videos. Specifically, video is modeled as instances, events, and scenes via a Semantic Extractor. Those semantics assist the Pixel Enhancer in understanding the recovered contents and generating more realistic visual results. The distilled global semantics embody the scene information of each frame, while the instance-specific semantics assemble the spatial-temporal contexts related to each instance. Furthermore, we devise a Semantics-Powered Attention Cross-Embedding (SPACE) block to bridge the pixel-level features with semantic knowledge, composed of a Global Perspective Shifter (GPS) and an Instance-Specific Semantic Embedding Encoder (ISEE). Concretely, the GPS module generates pairs of affine transformation parameters for pixel-level feature modulation conditioned on global semantics. After that, the ISEE module harnesses the attention mechanism to align the adjacent frames in the instance-centric semantic space. In addition, we incorporate a simple yet effective pre-alignment module to alleviate the difficulty of model training. Extensive experiments demonstrate the superiority of our model over existing state-of-the-art VSR methods.
Abstract:This article introduces a five-tiered route planner for accessing multiple nodes with multiple autonomous underwater vehicles (AUVs) that enables efficient task completion in stochastic ocean environments. First, the pre-planning tier solves the single-AUV routing problem to find the optimal giant route (GR), estimates the number of required AUVs based on GR segmentation, and allocates nodes for each AUV to access. Second, the route planning tier plans individual routes for each AUV. During navigation, the path planning tier provides each AUV with physical paths between any two points, while the actuation tier is responsible for path tracking and obstacle avoidance. Finally, in the stochastic ocean environment, deviations from the initial plan may occur, thus, an auction-based coordination tier drives online task coordination among AUVs in a distributed manner. Simulation experiments are conducted in multiple different scenarios to test the performance of the proposed planner, and the promising results show that the proposed method reduces AUV usage by 7.5% compared with the existing methods. When using the same number of AUVs, the fleet equipped with the proposed planner achieves a 6.2% improvement in average task completion rate.
Abstract:Cooperative online scalar field mapping is an important task for multi-robot systems. Gaussian process regression is widely used to construct a map that represents spatial information with confidence intervals. However, it is difficult to handle cooperative online mapping tasks because of its high computation and communication costs. This letter proposes a resource-efficient cooperative online field mapping method via distributed sparse Gaussian process regression. A novel distributed online Gaussian process evaluation method is developed such that robots can cooperatively evaluate and find observations of sufficient global utility to reduce computation. The bounded errors of distributed aggregation results are guaranteed theoretically, and the performances of the proposed algorithms are validated by real online light field mapping experiments.
Abstract:Learned B-frame video compression aims to adopt bi-directional motion estimation and motion compensation (MEMC) coding for middle frame reconstruction. However, previous learned approaches often directly extend neural P-frame codecs to B-frame relying on bi-directional optical-flow estimation or video frame interpolation. They suffer from inaccurate quantized motions and inefficient motion compensation. To address these issues, we propose a simple yet effective structure called Interpolation-driven B-frame Video Compression (IBVC). Our approach only involves two major operations: video frame interpolation and artifact reduction compression. IBVC introduces a bit-rate free MEMC based on interpolation, which avoids optical-flow quantization and additional compression distortions. Later, to reduce duplicate bit-rate consumption and focus on unaligned artifacts, a residual guided masking encoder is deployed to adaptively select the meaningful contexts with interpolated multi-scale dependencies. In addition, a conditional spatio-temporal decoder is proposed to eliminate location errors and artifacts instead of using MEMC coding in other methods. The experimental results on B-frame coding demonstrate that IBVC has significant improvements compared to the relevant state-of-the-art methods. Meanwhile, our approach can save bit rates compared with the random access (RA) configuration of H.266 (VTM). The code will be available at https://github.com/ruhig6/IBVC.
Abstract:In this paper, we consider improving the efficiency of information-based autonomous robot exploration in unknown and complex environments. We first utilize Gaussian process (GP) regression to learn a surrogate model to infer the confidence-rich mutual information (CRMI) of querying control actions, then adopt an objective function consisting of predicted CRMI values and prediction uncertainties to conduct Bayesian optimization (BO), i.e., GP-based BO (GPBO). The trade-off between the best action with the highest CRMI value (exploitation) and the action with high prediction variance (exploration) can be realized. To further improve the efficiency of GPBO, we propose a novel lightweight information gain inference method based on Bayesian kernel inference and optimization (BKIO), achieving an approximate logarithmic complexity without the need for training. BKIO can also infer the CRMI and generate the best action using BO with bounded cumulative regret, which ensures its comparable accuracy to GPBO with much higher efficiency. Extensive numerical and real-world experiments show the desired efficiency of our proposed methods without losing exploration performance in different unstructured, cluttered environments. We also provide our open-source implementation code at https://github.com/Shepherd-Gregory/BKIO-Exploration.