Abstract:This article introduces a five-tiered route planner for accessing multiple nodes with multiple autonomous underwater vehicles (AUVs) that enables efficient task completion in stochastic ocean environments. First, the pre-planning tier solves the single-AUV routing problem to find the optimal giant route (GR), estimates the number of required AUVs based on GR segmentation, and allocates nodes for each AUV to access. Second, the route planning tier plans individual routes for each AUV. During navigation, the path planning tier provides each AUV with physical paths between any two points, while the actuation tier is responsible for path tracking and obstacle avoidance. Finally, in the stochastic ocean environment, deviations from the initial plan may occur, thus, an auction-based coordination tier drives online task coordination among AUVs in a distributed manner. Simulation experiments are conducted in multiple different scenarios to test the performance of the proposed planner, and the promising results show that the proposed method reduces AUV usage by 7.5% compared with the existing methods. When using the same number of AUVs, the fleet equipped with the proposed planner achieves a 6.2% improvement in average task completion rate.
Abstract:In this paper, physics-informed neural network (PINN) based on characteristic-based split (CBS) is proposed, which can be used to solve the time-dependent Navier-Stokes equations (N-S equations). In this method, The output parameters and corresponding losses are separated, so the weights between output parameters are not considered. Not all partial derivatives participate in gradient backpropagation, and the remaining terms will be reused.Therefore, compared with traditional PINN, this method is a rapid version. Here, labeled data, physical constraints and network outputs are regarded as priori information, and the residuals of the N-S equations are regarded as posteriori information. So this method can deal with both data-driven and data-free problems. As a result, it can solve the special form of compressible N-S equations -- -Shallow-Water equations, and incompressible N-S equations. As boundary conditions are known, this method only needs the flow field information at a certain time to restore the past and future flow field information. We solve the progress of a solitary wave onto a shelving beach and the dispersion of the hot water in the flow, which show this method's potential in the marine engineering. We also use incompressible equations with exact solutions to prove this method's correctness and universality. We find that PINN needs more strict boundary conditions to solve the N-S equation, because it has no computational boundary compared with the finite element method.