Abstract:Diffusion-based Video Super-Resolution (VSR) is renowned for generating perceptually realistic videos, yet it grapples with maintaining detail consistency across frames due to stochastic fluctuations. The traditional approach of pixel-level alignment is ineffective for diffusion-processed frames because of iterative disruptions. To overcome this, we introduce SeeClear--a novel VSR framework leveraging conditional video generation, orchestrated by instance-centric and channel-wise semantic controls. This framework integrates a Semantic Distiller and a Pixel Condenser, which synergize to extract and upscale semantic details from low-resolution frames. The Instance-Centric Alignment Module (InCAM) utilizes video-clip-wise tokens to dynamically relate pixels within and across frames, enhancing coherency. Additionally, the Channel-wise Texture Aggregation Memory (CaTeGory) infuses extrinsic knowledge, capitalizing on long-standing semantic textures. Our method also innovates the blurring diffusion process with the ResShift mechanism, finely balancing between sharpness and diffusion effects. Comprehensive experiments confirm our framework's advantage over state-of-the-art diffusion-based VSR techniques. The code is available: https://github.com/Tang1705/SeeClear-NeurIPS24.
Abstract:We introduce Seed-Music, a suite of music generation systems capable of producing high-quality music with fine-grained style control. Our unified framework leverages both auto-regressive language modeling and diffusion approaches to support two key music creation workflows: \textit{controlled music generation} and \textit{post-production editing}. For controlled music generation, our system enables vocal music generation with performance controls from multi-modal inputs, including style descriptions, audio references, musical scores, and voice prompts. For post-production editing, it offers interactive tools for editing lyrics and vocal melodies directly in the generated audio. We encourage readers to listen to demo audio examples at https://team.doubao.com/seed-music .
Abstract:We introduce Seed-TTS, a family of large-scale autoregressive text-to-speech (TTS) models capable of generating speech that is virtually indistinguishable from human speech. Seed-TTS serves as a foundation model for speech generation and excels in speech in-context learning, achieving performance in speaker similarity and naturalness that matches ground truth human speech in both objective and subjective evaluations. With fine-tuning, we achieve even higher subjective scores across these metrics. Seed-TTS offers superior controllability over various speech attributes such as emotion and is capable of generating highly expressive and diverse speech for speakers in the wild. Furthermore, we propose a self-distillation method for speech factorization, as well as a reinforcement learning approach to enhance model robustness, speaker similarity, and controllability. We additionally present a non-autoregressive (NAR) variant of the Seed-TTS model, named $\text{Seed-TTS}_\text{DiT}$, which utilizes a fully diffusion-based architecture. Unlike previous NAR-based TTS systems, $\text{Seed-TTS}_\text{DiT}$ does not depend on pre-estimated phoneme durations and performs speech generation through end-to-end processing. We demonstrate that this variant achieves comparable performance to the language model-based variant and showcase its effectiveness in speech editing. We encourage readers to listen to demos at \url{https://bytedancespeech.github.io/seedtts_tech_report}.
Abstract:Video compression aims to reconstruct seamless frames by encoding the motion and residual information from existing frames. Previous neural video compression methods necessitate distinct codecs for three types of frames (I-frame, P-frame and B-frame), which hinders a unified approach and generalization across different video contexts. Intra-codec techniques lack the advanced Motion Estimation and Motion Compensation (MEMC) found in inter-codec, leading to fragmented frameworks lacking uniformity. Our proposed \textbf{Intra- \& Inter-frame Video Compression (I$^2$VC)} framework employs a single spatio-temporal codec that guides feature compression rates according to content importance. This unified codec transforms the dependence across frames into a conditional coding scheme, thus integrating intra- and inter-frame compression into one cohesive strategy. Given the absence of explicit motion data, achieving competent inter-frame compression with only a conditional codec poses a challenge. To resolve this, our approach includes an implicit inter-frame alignment mechanism. With the pre-trained diffusion denoising process, the utilization of a diffusion-inverted reference feature rather than random noise supports the initial compression state. This process allows for selective denoising of motion-rich regions based on decoded features, facilitating accurate alignment without the need for MEMC. Our experimental findings, across various compression configurations (AI, LD and RA) and frame types, prove that I$^2$VC outperforms the state-of-the-art perceptual learned codecs. Impressively, it exhibits a 58.4\% enhancement in perceptual reconstruction performance when benchmarked against the H.266/VVC standard (VTM). Official implementation can be found at \href{https://github.com/GYukai/I2VC}{https://github.com/GYukai/I2VC}
Abstract:Fact-checking is the task of verifying the factuality of a given claim by examining the available evidence. High-quality evidence plays a vital role in enhancing fact-checking systems and facilitating the generation of explanations that are understandable to humans. However, the provision of both sufficient and relevant evidence for explainable fact-checking systems poses a challenge. To tackle this challenge, we propose a method based on a Large Language Model to automatically retrieve and summarize evidence from the Web. Furthermore, we construct RU22Fact, a novel multilingual explainable fact-checking dataset on the Russia-Ukraine conflict in 2022 of 16K samples, each containing real-world claims, optimized evidence, and referenced explanation. To establish a baseline for our dataset, we also develop an end-to-end explainable fact-checking system to verify claims and generate explanations. Experimental results demonstrate the prospect of optimized evidence in increasing fact-checking performance and also indicate the possibility of further progress in the end-to-end claim verification and explanation generation tasks.
Abstract:Accurate and efficient extraction of microstructures in microscopic images of materials plays a critical role in the exploration of structure-property relationships and the optimization of process parameters. Deep learning-based image segmentation techniques that rely on manual annotation are time-consuming and labor-intensive and hardly meet the demand for model transferability and generalization. Segment Anything Model (SAM), a large visual model with powerful deep feature representation and zero-shot generalization capabilities, has provided new solutions for image segmentation. However, directly applying SAM to segmenting microstructures in microscopic images of materials without human annotation cannot achieve the expected results, as the difficulty of adapting its native prompt engineering to the dense and dispersed characteristics of key microstructures in materials microscopy images. In this paper, we propose MatSAM, a general and efficient microstructure extraction solution based on SAM. A new point-based prompts generation strategy is designed, grounded on the distribution and shape of materials microstructures. It generates prompts for different microscopic images, fuses the prompts of the region of interest (ROI) key points and grid key points, and integrates post-processing methods for quantitative characterization of materials microstructures. For common microstructures including grain boundary and phase, MatSAM achieves superior segmentation performance to conventional methods and is even preferable to supervised learning methods evaluated on 18 materials microstructures imaged by the optical microscope (OM) and scanning electron microscope (SEM). We believe that MatSAM can significantly reduce the cost of quantitative characterization of materials microstructures and accelerate the design of new materials.
Abstract:Leveraging wearable devices for motion reconstruction has emerged as an economical and viable technique. Certain methodologies employ sparse Inertial Measurement Units (IMUs) on the human body and harness data-driven strategies to model human poses. However, the reconstruction of motion based solely on sparse IMUs data is inherently fraught with ambiguity, a consequence of numerous identical IMU readings corresponding to different poses. In this paper, we explore the spatial importance of multiple sensors, supervised by text that describes specific actions. Specifically, uncertainty is introduced to derive weighted features for each IMU. We also design a Hierarchical Temporal Transformer (HTT) and apply contrastive learning to achieve precise temporal and feature alignment of sensor data with textual semantics. Experimental results demonstrate our proposed approach achieves significant improvements in multiple metrics compared to existing methods. Notably, with textual supervision, our method not only differentiates between ambiguous actions such as sitting and standing but also produces more precise and natural motion.
Abstract:As a critical clue of video super-resolution (VSR), inter-frame alignment significantly impacts overall performance. However, accurate pixel-level alignment is a challenging task due to the intricate motion interweaving in the video. In response to this issue, we introduce a novel paradigm for VSR named Semantic Lens, predicated on semantic priors drawn from degraded videos. Specifically, video is modeled as instances, events, and scenes via a Semantic Extractor. Those semantics assist the Pixel Enhancer in understanding the recovered contents and generating more realistic visual results. The distilled global semantics embody the scene information of each frame, while the instance-specific semantics assemble the spatial-temporal contexts related to each instance. Furthermore, we devise a Semantics-Powered Attention Cross-Embedding (SPACE) block to bridge the pixel-level features with semantic knowledge, composed of a Global Perspective Shifter (GPS) and an Instance-Specific Semantic Embedding Encoder (ISEE). Concretely, the GPS module generates pairs of affine transformation parameters for pixel-level feature modulation conditioned on global semantics. After that, the ISEE module harnesses the attention mechanism to align the adjacent frames in the instance-centric semantic space. In addition, we incorporate a simple yet effective pre-alignment module to alleviate the difficulty of model training. Extensive experiments demonstrate the superiority of our model over existing state-of-the-art VSR methods.
Abstract:Learned B-frame video compression aims to adopt bi-directional motion estimation and motion compensation (MEMC) coding for middle frame reconstruction. However, previous learned approaches often directly extend neural P-frame codecs to B-frame relying on bi-directional optical-flow estimation or video frame interpolation. They suffer from inaccurate quantized motions and inefficient motion compensation. To address these issues, we propose a simple yet effective structure called Interpolation-driven B-frame Video Compression (IBVC). Our approach only involves two major operations: video frame interpolation and artifact reduction compression. IBVC introduces a bit-rate free MEMC based on interpolation, which avoids optical-flow quantization and additional compression distortions. Later, to reduce duplicate bit-rate consumption and focus on unaligned artifacts, a residual guided masking encoder is deployed to adaptively select the meaningful contexts with interpolated multi-scale dependencies. In addition, a conditional spatio-temporal decoder is proposed to eliminate location errors and artifacts instead of using MEMC coding in other methods. The experimental results on B-frame coding demonstrate that IBVC has significant improvements compared to the relevant state-of-the-art methods. Meanwhile, our approach can save bit rates compared with the random access (RA) configuration of H.266 (VTM). The code will be available at https://github.com/ruhig6/IBVC.
Abstract:Variable-rate mechanism has improved the flexibility and efficiency of learning-based image compression that trains multiple models for different rate-distortion tradeoffs. One of the most common approaches for variable-rate is to channel-wisely or spatial-uniformly scale the internal features. However, the diversity of spatial importance is instructive for bit allocation of image compression. In this paper, we introduce a Spatial Importance Guided Variable-rate Image Compression (SigVIC), in which a spatial gating unit (SGU) is designed for adaptively learning a spatial importance mask. Then, a spatial scaling network (SSN) takes the spatial importance mask to guide the feature scaling and bit allocation for variable-rate. Moreover, to improve the quality of decoded image, Top-K shallow features are selected to refine the decoded features through a shallow feature fusion module (SFFM). Experiments show that our method outperforms other learning-based methods (whether variable-rate or not) and traditional codecs, with storage saving and high flexibility.